
Native Inspect Manual

HP Part Number: 528122-014
Published: February 2012
Edition: J06.12 and subsequent J-series RVUs and H06.23 and subsequent H-series RVUs

© Copyright 2011, 2012 Hewlett-Packard Development Company, L.P.

Legal Notice

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial
Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP products and services are set forth in the express
warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Export of the information contained in this publication may require authorization from the U.S. Department of Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Java is a U.S. trademark of Sun Microsystems, Inc.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks, and IT DialTone and The Open Group are trademarks of The Open
Group in the U.S. and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the Open Software Foundation, Inc. OSF MAKES
NO WARRANTY OF ANY KIND WITH REGARD TO THE OSF MATERIAL PROVIDED HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. OSF shall not be liable for errors contained herein or for
incidental consequential damages in connection with the furnishing, performance, or use of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. The OSF documentation and the OSF software to which it relates are derived in part
from materials supplied by the following:© 1987, 1988, 1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital Equipment Corporation.
© 1985, 1988, 1989, 1990 Encore Computer Corporation. © 1988 Free Software Foundation, Inc. © 1987, 1988, 1989, 1990, 1991
Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991, 1992 International Business Machines Corporation. © 1988, 1989
Massachusetts Institute of Technology. © 1988, 1989, 1990 Mentat Inc. © 1988 Microsoft Corporation. © 1987, 1988, 1989, 1990, 1991,
1992 SecureWare, Inc. © 1990, 1991 Siemens Nixdorf Informationssysteme AG. © 1986, 1989, 1996, 1997 Sun Microsystems, Inc. © 1989,
1990, 1991 Transarc Corporation.OSF software and documentation are based in part on the Fourth Berkeley Software Distribution under license
from The Regents of the University of California. OSF acknowledges the following individuals and institutions for their role in its development: Kenneth
C.R.C. Arnold, Gregory S. Couch, Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert Elz. © 1980, 1981, 1982, 1983, 1985,
1986, 1987, 1988, 1989 Regents of the University of California.

Contents
About This Document...9

Supported Release Version Updates (RVUs)..9
Intended Audience..9
New and Changed Information..9

New and Changed Information for H06.24/J06.13 (528122-014)...9
New and Changed Information for H06.23/J06.12 (528122-013)...9
New and Changed Information H06.21/J06.10 (528122-012)...9
New and Changed Information for H06.20/J06.09 (528122-011)..9
New and Changed Information for H06.20/J06.09 and H06.17/J06.06 (528122–009)............10
New and Changed Information for H06.14/J06.03 and H06.15/J06.04 (528122–008).............10

Document Organization..11
Notation Conventions..11

General Syntax Notation..11
Related Information...13
Publishing History...13
HP Encourages Your Comments..14

1 Introducing Native Inspect...15
Native Inspect on TNS/E Systems...15
Debuggers on NonStop TNS/E Systems..15
Origins of Native Inspect...16

GDB Industry Standard, Open Source Debugger...16
Additional NonStop Extensions..16
Relationship to the Inspect Subsystem..16
Documentation for Native Inspect...16
Comparing Native Inspect to Debug...17
Comparing Native Inspect to Inspect..17
COBOL-Specific Differences...18

Process Debugging Using Native Inspect...18
Languages Supported by Native Inspect...18
Starting Native Inspect...19
Debugger Selection Criteria..20
Native Inspect Command Abbreviations and Command Alternates...23

Debugging Multiple Processes..24
Debugging Two Processes With One Instance of Native Inspect...24
Identifying Additional Processes...25
Using a Separate Instance of Native Inspect for Each Process..25

Global Debugging...26
Native Inspect Is the Global Debugger...26

Debugging TNS Processes...27
Debugging Snapshot Files...27

Creating a Snapshot File...28
Opening a Snapshot file...28

Debugging DLLs...28
Suspending Process Execution on DLL Events..28
Listing DLLs..28
Loading Symbols for DLLs..28
Addressing Symbols for DLLs Loaded at Another Address..28
Setting Breakpoints..29

Debugging Memory Problems..29
Heap Corruption..29
Memory Leaks...29

Contents 3

Access Errors...30
Commands For Interactive Memory Debugging..30

Handling Events...30
Assessing Your Location After an Event...30

Switching Between Debuggers (Inspect and Visual Inspect)...31
Stopping Native Inspect..32
Differences Between Native Inspect and WDB and GDB..32

2 Using Native Inspect...33
Quick Start for Inspect Users..33
Preparing to Debug Using Native Inspect...33

Compiling and Transferring Program Files...34
Gaining Control of a Process Using Native Inspect...34
Optionally Loading Symbols Information...34
Optionally Determining the Compilation-Time Source File Name..36
Optionally Configuring a Search Path for Your Source Files...36
Advancing Execution to main() in C/C++ Programs..36

Sample Native Inspect Session (C++ Program)...37
Launching a C++ Program Under Native Inspect Control...37
Listing the Source...38
Tracing the Stack...38
Controlling Execution..38
Printing Variables and Memory..39
Stepping Execution Into a Function...39
Setting a Memory Access Breakpoint (MAB)..39
Stopping Mid-Statement..40
Ending the Program and Debugging Session...40

Sample Native Inspect Session (COBOL Program)...40
Starting a Program Under Native Inspect Control...40
Listing Source and Setting a Breakpoint at a Line Number...41
Stepping Execution...41
Displaying a Level 88 Condition Name...41
Examining a Record...42
Modifying a Record Field..43
Examining Tables...43
Setting a Breakpoint on a Nested Program Unit...45
Debugging Copy Libraries..45
Terminating the Debugging Session..46

3 Using Native Inspect With COBOL Programs...47
Understanding how Native Inspect finds Data Items..47
Handling of SOURCE and COPY Directives..47

Displaying Lines Included by SOURCE and COPY Directives..47
Setting Breakpoints at Lines Included by SOURCE and COPY Directives....................................47

Displaying Source Lines...47
Specifying Variables and Tables...48

Specifying Variables...48
Specifying Tables...48
Specifying Tables With Variable Upper Bounds...49
Specifying Level 88 Condition Names..49

Displaying Variables...50
Displaying Level 88 Condition Names..50
Displaying Argument Values..50
Displaying Unprintable Characters...50
Displaying the Length of the COBOL Variables...50

Handling of REDEFINES and RENAMES..51

4 Contents

Assigning Values to Data Items...51
Assigning Values to Variables..51
Changing the Radix of Numeric Literals..52
Assigning Values to Level 88 Condition Names..52
Assigning Values to Tables and Records..52
Assigning Values to Character Strings...53

Evaluating Expressions..53
Displaying Data Item Types..54
Performing Machine-Level Debugging..54
Controlling Execution..54

4 Native Inspect Command Syntax..56
Categories of Native Inspect Commands...56
Syntax of Common Command Elements...59

Syntax of locspec...59
Syntax of native-address...61
Syntax of llce..61
Syntax of expression...62
Syntax of /format...63

Specifying Pathnames in Native Inspect Commands..64
Resolving Pathnames..64
Identifying the Default Current Working Directory...64

(comment) Command...64
a (an) Command..64
add-symbol-file Command..65

Related Commands..65
amap Command..65

Examples..65
attach Command..66

Example...66
base Command..66
break (tbreak) Command...67

Setting Conditional Breakpoints...67
Setting Global Breakpoints..67
Examples..68

bt (tn) Command..69
Consideration for Debugging TNS Processes...69
Example...69

catch Command...69
Managing a Stopping Process (STOP and ABEND Events)...70

cd Command...70
Example...70

commands Command...70
Example...70

comment (#) Command...71
condition Command...71
continue Command...71

Example...71
define Command..71

Usage Note..72
Example...72

dn Command...72
Example...73

delete Command..73
delete display Command...73

Contents 5

Consideration..73
detach Command...73

Considerations..74
Example...74

dir Command..74
Example...74

disable Command..75
Example...75

disable display Command...75
Considerations..75

disassemble (da) Command...75
Example...76

display Command..76
Example...77

dmab Command..77
Example...77

document Command...77
Usage Note..78

down (down-silently) Command..78
Example...78

enable Command...78
Example...78

enable display Command..79
Considerations..79

env Command...79
eq Command...79
exit (quit) Command...79
fc Command..79
files (ls) Command..80
finish Command...80
fn Command..80
fopen Command..81

Considerations..81
Examples..81

frame (select-frame) Command...82
Considerations..83
Examples..83

help Command, help Option..83
Examples..83

hold Command..84
ignore Command...84
ih Command..84

Example...84
in Command..85

Example...85
info Command...86

Examples..88
info Command (memory leak detection)...90

Examples..91
jump Command...93

Example...94
kill Command..94
list Command...94

Locating Source Files..95
Repeating the list Command..95

6 Contents

Examples..95
log Command..97
ls (files) Command..97
mab Command..97

Examples..98
map-source-name (map) Command...99

Considerations..100
Examples..100

mh Command..100
Example...101

modify (mn) Command..102
Example...102

next (nexti) Command...102
Example...102

nocstm Option...103
output Command..103
print Command..103

Considerations..104
Examples..105

priv Command...108
ptype Command..108

Example...108
pwd Command..108

Example...108
quit (exit) Command...108
reg Command..109
save Command..109
select-frame Command..110
set Command (environment)...110

Examples..113
set Command (variable)..114

Consideration..115
set heap-check Command (memory leak detection)...115

Examples..116
show Command...116

Example...117
snapshot Command..117
source Command...117

Example...117
step (stepi) Command...118

Example...118
switch Command..119
symbol-file (symbol) Command...119

Related Commands..120
Example...120

tbreak Command...120
tj Command...120
tu Command..120

Examples..120
tn (bt) Command..121
unload-symbol-file Command...122
unmap-source-name (unmap) Command..122

Examples..122
until Command...122

Examples..123

Contents 7

up (up-silently) Command..123
Example...123

vector Command..124
Considerations..124

version Option...124
vq Command...124
wait Command..125
whatis Command...125
which Command..125

Example...125
x Command...125

Default Values...126
Convenience Variables $_ and $__..126
Repeating the Last x Command..126
Examples..127

5 Using Tcl Scripting..129
Introduction to Tcl...129

Learning Tcl...129
Using Native Inspect Tcl Commands..129

Pass-Through of Tcl Commands..129
Native Inspect Commands Implemented in Tcl..129
Loading a Tcl Script..130
Using Variables Defined in a Tcl Script..130

Programming Native Inspect Tcl Commands...130
Namespaces and Package Loading Rules...130

Tcl Examples..131
Tcl Commands Provided by Native Inspect...133

A Command Mapping With Debug and Inspect..135
B Redirected and Aliased WDB Debugger Commands...................................139
Index...140

8 Contents

About This Document
This manual describes the use of the Native Inspect symbolic command-line debugger for HP
NonStop TNS/E systems.

Supported Release Version Updates (RVUs)
This manual supports J06.03 and all subsequent J-series RVUs and H06.13 and all subsequent
H-series RVUs until otherwise indicated in a replacement publication.

Intended Audience
This manual is intended for anyone who wants to debug TNS/E native processes or snapshot files
using a command-line debugger on a TNS/E system.

New and Changed Information

New and Changed Information for H06.24/J06.13 (528122-014)
The H06.24 and J06.13 version of the manual contains the following enhancements:

• Updated the Origins of Native Inspect (page 16) section.

• Added a new compression option for the save Command (page 109).

• Added a new library yrtcdll for 64-bit to the Debugging Memory Problems (page 29) section,
the info Command (memory leak detection) (page 90) and the set heap-check Command
(memory leak detection) (page 115).

• Added a new note to the Tcl Commands Provided by Native Inspect (page 133) section and
to Table 14 (page 133).

New and Changed Information for H06.23/J06.12 (528122-013)
The H06.23 and J06.12 version of the manual contains the following enhancements:

• Added a new note, NOTE (page 90).

• Added a sentence as a fourth note,NOTE (page 103).

New and Changed Information H06.21/J06.10 (528122-012)
The H06.21 and J06.10 version of the manual contains the following enhancements:

• Added a new section, Displaying the Length of the COBOL Variables (page 50).

• Updated the syntax and the description of attach Command (page 66).

• Updated the syntax and the description of detach Command (page 73).

• Updated the syntax and the description of vector Command (page 124).

New and Changed Information for H06.20/J06.09 (528122-011)
The H06.20 and J06.09 version of the manual contains the following enhancements:

• Added examples in the Examples (page 68) section of the break (tbreak) Command (page 67).

• Updated the description for the following attributes of map-source-name (map):
source-name◦

◦ source-prefix

• Updated the description of what column header of info Command (page 86).

Supported Release Version Updates (RVUs) 9

New and Changed Information for H06.20/J06.09 and H06.17/J06.06
(528122–009)

The H06.16 and J06.05 version of the manual contains the following enhancements:

• Added these commands and their descriptions to Utility Commands in Table 11: Native Inspect
Command Functions (page 56), and added the commands, syntax, and examples to the
commands section:
◦ define commandname

◦ document commandname

◦ show user [commandname]

• Added set optimized-loc-print n and an example of its usage to set Command
(environment) (page 110).

Miscellaneous changes include:

• Changed the wording under nocstm Option (page 103) to refer to the custom startup file,
described under Reading the Custom File (page 23).

• Clarified text under Debugging TNS Processes (page 27).

New and Changed Information for H06.14/J06.03 and H06.15/J06.04
(528122–008)

New and Changed Information for H06.14/J06.03 and H06.15/J06.04 (528122–008)
The H06.14, J06.03, H06.15, and J06.04 version of the manual contains the following
enhancements:

• Added the new fopen Command (page 81), with its description, syntax, and examples. Added
its summary information to Utility Commands in Table 11 (page 56).

• Added information on the new functionality of the print Command (page 103) that enables you
to invoke command line function calls in the program being debugged from the debugger
command line.

• Added a new section, Debugging Memory Problems (page 29), to indicate how the Native
Inspect debugger can find memory leaks, view heap usage, and detect related problems.

• Added new memory leak detection commands and options to existing commands to Chapter 4:
Native Inspect Command Syntax. These commands and options are summarized under
Categories of Native Inspect Commands (page 56) and at the end of Table 11 (page 56).
The new commands are:
◦ info Command (memory leak detection) (page 90)

◦ set heap-check Command (memory leak detection) (page 115)
The heap-check option is added to the show Command (page 116).

• Added the optimized-code-warning [off |on] option to the set Command
(environment) (page 110). This option's status can be displayed using the show Command
(page 116).

Miscellaneous changes include:

• Under set Command (environment) (page 110), changed the mode attribute to mode {user
| priv [on | off]}.

• Added section, Stopping Mid-Statement (page 40), to indicate how Native Inspect handles
situations when the debugger is not stopped at the starting instruction of a source statement.

• Removed the glossary and put the terms and definitions in the NonStop System Glossary.

10

• Under the save Command (page 109), indicated that snapshot files of file code 130 are used
for offline debugging.

• Added the process entered debug event to Table 6 (page 31).

• Updated Document Organization (page 11) to include Appendix B.

• Changed all references to linespec to locspec. See Syntax of locspec (page 59), which
also indicates that locspec is sometimes referred to as linespec in files and documents
that are used by or related to Native Inspect.

Made miscellaneous formatting corrections to improve accuracy and consistency.

Document Organization
This document is organized as follows:

Table 1 Contents of the Native Inspect Manual

DescriptionChapter

Describes the basic principles of using Native Inspect to debug TNS/E
native processes and snapshot files.

Chapter 1: Introducing Native Inspect

Presents a sample session using Native Inspect to debug a TNS/E native
process.

Chapter 2: Using Native Inspect

Describes features and behavior of Native Inspect that are specific to the
debugging of COBOL programs.

Chapter 3: Using Native Inspect With
COBOL Programs

Lists Native Inspect commands in related groupings and gives syntax for
all the Native Inspect commands and command-line options.

Chapter 4: Native Inspect Command
Syntax

Describes the commands of the Tool Command Language (Tcl)Chapter 5: Using Tcl Scripting

Lists Debug and Inspect commands with their Native Inspect equivalents.Appendix A: Command Mapping With
Debug and Inspect

Shows the correspondence between WDB and Native Inspect commands.Appendix B: Redirected and Aliased WDB
Debugger Commands

Notation Conventions

General Syntax Notation
This list summarizes the notation conventions for syntax presentation in this manual.
UPPERCASE LETTERS

Uppercase letters indicate keywords and reserved words. Type these items exactly as shown.
Items not enclosed in brackets are required. For example:
MAXATTACH

Italic Letters

Italic letters, regardless of font, indicate variable items that you supply. Items not enclosed in
brackets are required. For example:
file-name

Computer Type

Computer type letters indicate:
• C and Open System Services (OSS) keywords, commands, and reserved words. Type

these items exactly as shown. Items not enclosed in brackets are required. For example:
Use the cextdecs.h header file.

• Text displayed by the computer. For example:

Document Organization 11

Last Logon: 14 May 2006, 08:02:23

• A listing of computer code. For example:
if (listen(sock, 1) < 0)
{
perror("Listen Error");
exit(-1);
}

Bold Text

Bold text in an example indicates user input typed at the terminal. For example:
ENTER RUN CODE

?123
CODE RECEIVED: 123.00

The user must press the Return key after typing the input.
[] Brackets

Brackets enclose optional syntax items. For example:
TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or none.
The items in the list can be arranged either vertically, with aligned brackets on each side of
the list, or horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:
FC [num]
 [-num]
 [text]

K [X|D] address

{ } Braces
A group of items enclosed in braces is a list from which you are required to choose one item.
The items in the list can be arranged either vertically, with aligned braces on each side of the
list, or horizontally, enclosed in a pair of braces and separated by vertical lines. For example:
LISTOPENS PROCESS {$appl-mgr-name}
 {$process-name }

ALLOWSU {ON|OFF}

| Vertical Line
A vertical line separates alternatives in a horizontal list that is enclosed in brackets or braces.
For example:
inspect {off|on|saveabend}

… Ellipsis
An ellipsis immediately following a pair of brackets or braces indicates that you can repeat
the enclosed sequence of syntax items any number of times. For example:
M address [,new-value]…
 -] {0|1|2|3|4|5|6|7|8|9}…

An ellipsis immediately following a single syntax item indicates that you can repeat that syntax
item any number of times. For example:
"s-char…"

Punctuation
Parentheses, commas, semicolons, and other symbols not previously described must be typed
as shown. For example:

12

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a required
character that you must type as shown. For example:
"[" repetition-constant-list "]"

Item Spacing
Spaces shown between items are required unless one of the items is a punctuation symbol such
as a parenthesis or a comma. For example:
CALL STEPMOM (process-id) ;

In the following example, space is permitted (but not required) following the comma. Space is
not permitted following the period :
STATUS *, TERM $ZTN2.#PT4UCAF

Line Spacing
If the syntax of a command is too long to fit on a single line, each continuation line is indented
three spaces and is separated from the preceding line by a blank line. This spacing distinguishes
items in a continuation line from items in a vertical list of selections. For example:
ALTER [/ OUT file-spec /] LINE

 [,attribute-spec]…

Related Information
Three debuggers are available for use when debugging on TNS/E systems, as described in Table 2.

Table 2 Related Debugging Tools and Documentation

User InformationSupported DebuggerTarget Process

Native Inspect Manual and Native
Inspect online help.

Native Inspect, a command-line
debugger running on the TNS/E host.

TNS/E native processes on a TNS/E
system.

Visual Inspect online help.Visual Inspect, a GUI debugger
running on a Microsoft Windows

TNS/E native processes on a TNS/E
system.

Workstation connected to the TNS/E
host.Emulated TNS processes on a TNS/E

system (either accelerated by OCA or
interpreted by OCI).

Inspect Manual.Inspect, a command-line debugger
running on the TNS/E host.

Emulated TNS processes on a TNS/E
system (either accelerated by OCA or
interpreted by OCI).

Publishing History
The publishing history for this volume is shown in Table 3 (page 13).

Table 3 Part Numbers and Publication Dates

Publication DateProduct VersionPart Number

July 2005Native Inspect H01528122–003

November 2005Native Inspect H01528122–004

May 2006Native Inspect H01528122–005

August 2006Native Inspect H01528122–006

February 2008Native Inspect H01528122–007

August 2008Native Inspect H01528122–008

Related Information 13

Table 3 Part Numbers and Publication Dates (continued)

Publication DateProduct VersionPart Number

February 2009Native Inspect H01528122–009

February 2010Native Inspect H01528122–011

August 2010Native Inspect H01528122-012

September 2011Native Inspect H01528122-013

February 2012Native Inspect H01528122-014

HP Encourages Your Comments
HP encourages your comments concerning this document. We are committed to providing
documentation that meets your needs. Send any errors found, suggestions for improvement, or
compliments to docsfeedback@hp.com.
Include the document title, part number, and any comment, error found, or suggestion for
improvement you have concerning this document.

14

mailto:docsfeedback@hp.com

1 Introducing Native Inspect
Native Inspect on TNS/E Systems

Native Inspect is a system-level command-line symbolic debugger that you use to debug TNS/E
native processes and snapshot files. Native Inspect runs only on a NonStop TNS/E host system
(not on a TNS/R or TNS system).
You can use Native Inspect to do the following tasks:

• To debug TNS/E native programs or snapshot files written in TNS/E native C/C++, pTAL, or
TNS/E native COBOL, especially when Visual Inspect is not available

• To use a Tool Command Language (Tcl) script for automating debugging operations on TNS/E
native debugging targets

• To perform privileged or global debugging on TNS/E native programs

Debuggers on NonStop TNS/E Systems
TNS/R systems support two command-line debuggers: Debug and Inspect. On a TNS/E system,
Native Inspect replaces both Debug and Inspect. Debug does not exist on TNS/E systems. Inspect
is present on TNS/E systems, but you can use it only to debug emulated TNS processes. You
cannot use Inspect to debug native TNS/E processes and snapshot files. Table 4 summarizes the
debugger availability by system type.

Table 4 Debugger Availability by System Type

Visual InspectNative InspectInspectDebugSystem

NoNoYesYesTNS/R

Yes1YesEmulatedNoTNS/E
1 Requires a Windows workstation.

Table 5 provides usage scenarios for Native Inspect, Visual Inspect, and Inspect on a TNS/E
system. For each debugger, symbolic debugging is available for code optimized at level 0 or 1,
and debugging support is limited for code optimized at level 2.

Table 5 Using Debugging Options on TNS/E Systems

Languages SupportedType or State You Can DebugIDDebugger to Use

TNS/E native C/C++TNS/E native processes (executing in the
same CPU).

T1237Native Inspect on
NonStop TNS/E systems.

TNS/E native COBOLSnapshot files that save the state of TNS/E
native processes.

pTAL

TNS/E native C/C++TNS/E native processes.T7877,
T9756,

Visual Inspect on
Windows.1

TNS/E native COBOLTNS/E and TNS/R native snapshot files.T9226,
T9673. pTALEmulated TNS processes.

TNS FortranEmulated TNS processes on TNS/E systems
(either accelerated with OCA or interpreted
with OCI).

T9673Inspect on NonStop
TNS/E.

TNS COBOLSnapshot files of all processes (TNS/R native,
TNS/E native and nonnative).

TAL

TNS C/C++

Screen COBOL

Native Inspect on TNS/E Systems 15

1 This is preferred debugger on TNS/E systems.

Origins of Native Inspect
The first release of the Native Inspect application was based on the Free Software Foundation GDB
(Gnu) debugger (version 4.16). In H06.13, the Native Inspect application was derived from WDB
(Wildebeest) command-line debugger (version 5.5) and from Tool Command Language (Tcl) version
8.0.4. This release of the Native Inspect application is derived from GDB version 6.8 and Tcl
version 8.5. It continues to have the features that were leveraged from WDB version 5.5. Information
about redirected and aliased WDB commands is provided in Appendix B (page 139).

GDB Industry Standard, Open Source Debugger
The GDB debugger supports many platforms and is an industry-standard debugger. Like both GDB
and WDB, Native Inspect is open source, and much of the functionality of Native Inspect is the
same as that of GDB and WDB.
If you are familiar with GDB or WDB, you should find that Native Inspect is similar in many ways.
Documentation available for GDB or WDB might yield information that also applies to Native
Inspect.

Additional NonStop Extensions
Native Inspect includes many functions specific to NonStop systems, such as support for HP NonStop
operating system extensions to the symbol table format, multiprocess debugging support, COBOL
support, and support for EDIT files and memory access breakpoints or MABs.

Relationship to the Inspect Subsystem
Native Inspect originated in the UNIX environment and is therefore not part of the Inspect subsystem.
However, both Inspect and Visual Inspect are part of the Inspect subsystem.

Documentation for Native Inspect
The following documentation is relevant when using Native Inspect:
• Native Inspect-Specific:

Native Inspect Manual (this manual).◦
◦ Native Inspect Quick Reference Card.

◦ Native Inspect online help, using the help command, or the help option. (See the help
Command, help Option (page 83).)

• Related Documents:
Hewlett-Packard home page for WDB:
http://www.hp.com/go/WDB

◦

◦ The user manual for GDB, titled Debugging with GDB by Richard M. Stallman and Roland
H. Pesch. This document is freely available in various formats on the World-Wide Web.
Use your preferred search engine to locate a copy by searching on the title.

◦ Current GDB documentation:
http://www.gnu.org/software/gdb/

16 Introducing Native Inspect

http://www.hp.com/go/WDB
http://www.gnu.org/software/gdb/

Comparing Native Inspect to Debug
A summary of differences is provided in the following table:

DebugNative Inspect

Debugger of last resort on TNS/R and TNS systems; not
available on TNS/E systems.

The built-in debugger on TNS/E systems.

Part of the HP NonStop operating system.A separate product.

Executes in the context of the process being debugged.Executes as a separate process from the process being
debugged.

Native Inspect takes the place of Debug as the low-level default process debugger on TNS/E
systems. Therefore, Native Inspect is the debugger invoked if Visual Inspect (the preferred debugger
on TNS/E systems) is not available (for example, if no connection exists to a Windows client) or
if the INSPECT parameter is set to OFF.
Debugger selection criteria are shown in Figure 2 (page 21) and in Figure 3 (page 22).
Debug was an integral part of the operating system on previous NonStop platforms. On TNS/E,
Native Inspect is a separate licensed object file ($SYSTEM.SYSnn.EINSPECT), but still fulfills the
role of built-in debugger. Whereas Debug executed in the context of the process being debugged,
Native Inspect executes as a separate process in the same CPU as the process being debugged.
Running as a separate process reduces the chances of the debugger affecting target process
behavior.

Some Commands Are Debug-Compatible
Although Native Inspect is completely different in form from Debug, Native Inspect provides many
Debug-compatible commands, such as a, base, fn, ih, and mh. For a list of Debug commands
that have equivalent Native Inspect commands, see Appendix A: Command Mapping With Debug
and Inspect.

Comparing Native Inspect to Inspect
Native Inspect and Inspect are both command-line debuggers, but there are many differences in
the command sets of the two debuggers. Native Inspect commands and output formats are based
on GDB and are therefore very different from the commands and output formats of Inspect. Inspect
users should approach Native Inspect as a new product equipped with the additional power of
Tcl scripting.

Differences Between Native Inspect and Inspect

• Command names for Inspect and Native Inspect are different. For a comparison, see the
following:
◦ Table 16 (page 136) for a list of Inspect commands and equivalent Native Inspect

commands.
◦ Table 8 (page 33) for a list of the most commonly used Native Inspect commands with

their Inspect equivalents.

• The Inspect STEP OVER, STEP IN, and STEP functions are provided by the nexti command,
stepi command, and until command, respectively.

• Inspect locations are scope-based (that is, function/procedure), while Native Inspect’s locations
are based on source file line numbers. Native Inspect, unlike Inspect, does not prefix line
numbers and function names with a hash symbol (#).

• Native Inspect automatically displays the current line of source.

• The source command performs the same function as Inspect’s OBEY command.

Origins of Native Inspect 17

• Native Inspect does not contain formatting support for SPI buffers. You must use Visual Inspect
to display SPI buffers.

• The Inspect DISPLAY command is used in Inspect to print variable values. In Native Inspect,
the display command is defined to add variables and expressions to the automatic display
list – a list that is automatically displayed each time the program is suspended. The Native
Inspect print command and output command are equivalents to the Inspect DISPLAY
function.

COBOL-Specific Differences
The following capabilities of Inspect are not supported in Native Inspect:

• Setting breakpoints using the program-unit.label or program-unit.line-number
notation.

• Using PICTURE and FORMAT clauses for displaying items.

• Formatting records as an arbitrary type (DISPLAY AS command).

• Setting breakpoints on statement ordinals.

Process Debugging Using Native Inspect
Use Native Inspect to debug TNS/E native processes (and snapshot files) in either the Guardian
or HP NonStop Open System Services (OSS) environment.
The Native Inspect licensed object file is $SYSTEM.SYSnn.EINSPECT. Native Inspect runs as a
native, non-priv, high-pin process, separate from the process being debugged (see Comparing
Native Inspect to Debug (page 17)).
Native Inspect must always be running in the same CPU as the process you want to debug, as
shown in Figure 1 (page 19).

Languages Supported by Native Inspect
• TNS/E native C/C++

• pTAL

• TNS/E native COBOL
To debug code written in any other language for TNS/E systems or snapshot files created on a
TNS/R system, you must use Visual Inspect or Inspect.

18 Introducing Native Inspect

Figure 1 Native Inspect Runs in Same CPU as Current Process

Starting Native Inspect
You can start or enter Native Inspect in several ways, as follows:

• You can start a process under the control of the debugger, subject to the Debugger Selection
Criteria (using the TACL RUND command or the run -debug command in OSS).

• You can debug a running process (using the TACL DEBUG command).

• A running process can invoke the debugger (calling the PROCESS_DEBUG_ or DEBUG
procedure, by encountering a breakpoint, or as a result of an unhandled signal).

• You can explicitly start Native Inspect from a TACL prompt or from OSS.
These methods are described next.

Starting a Process Under the Control of the Debugger
At the TACL prompt, enter a RUND command, specifying the file name of the TNS/E native object
file you want to debug as follows:
TACL> rund $DISK2.MYSUBVOL.MYFILE

In OSS, enter a run command with the -debug option and specify the file name of the TNS/E
native object file you want to debug as follows:
OSS> run -debug usr/bin/myfile

Native Inspect is automatically run in the same CPU as the process ($DISK2.MYSUBVOL.MYFILE
in the first example) providing that the following conditions are true:

• The target usr/bin/myfile is a TNS/E native program (file code 800).

• You have not set up a Visual Inspect connection to the host.
For more information about when a particular debugger is invoked, see Debugger Selection Criteria
(page 20).

Debugging a Running Process
At the TACL prompt, enter a DEBUG command and specify the name of the TNS/E native process
as follows:
TACL> debug $myproc

Process Debugging Using Native Inspect 19

This command starts Native Inspect on the home terminal of the process $myproc.
You can optionally specify a home terminal on which you want Native Inspect to run, as follows:
TACL> debug $myproc, term $ztn10.#pthef

In OSS, enter a DEBUG command that includes the CPU and process numbers of the process you
want to debug as follows:
OSS> debug 5,135, term $myterm

Native Inspect gains control of the running process subject to the NonStop debugging rules
(described in Debugger Selection Criteria (page 20)).
For example, if a process is executing privileged code, the process must return to nonprivileged
code before a nonprivileged debug request completes. If you are logged on as the super ID
(255,255), you can enter the DEBUGNOW command, which immediately gives you access to the
specified process, even if it is running privileged code.

Invoking the Debugger From a Running Process
Native Inspect is automatically started by the NonStop operating system when a debugger is
required for any of the following reasons:

• TNS/E native process code calls the PROCESS_DEBUG_ or DEBUG procedure.

• A TNS/E native process encounters a breakpoint set by a prior debugging session.

• The user of another debugger switches to Native Inspect.
When a running process invokes a debugger, the operating system automatically selects a debugger
according to the debugger options you set (INSPECT ON or OFF) in addition to the process type
(TNS versus TNS/E) and the availability of a connection to Visual Inspect, which is the preferred
debugger on TNS/E systems.

Debugger Selection Criteria
The following two figures illustrate the criteria that are evaluated during debugger selection:

• Figure 2 (page 21)

• Figure 3 (page 22)
In both Figure 2 and Figure 3, debugger selection criteria are defined as follows:

INSPECT is set to ON for the process you will debug (set with TACL, the linker, or
the RUN[D] command).

Is the INSPECT attribute on?

You have started Visual Inspect and have connected to the TNS/E host on which
the process to be debugged will run. The user ID of the process must match the user
ID that was used to log on to Visual Inspect.

Is this a Visual Inspect session?

The Inspect subsystem (IMON, DMON, $DMnn) is running, and the Inspect
command-line interface is available.

Is Inspect available?

To summarize, Native Inspect is selected as the debugger under the following conditions:

• For TNS/E native processes when you have not established a Visual Inspect connection to the
NonStop host, or the INSPECT attribute is OFF (Figure 2).

• For TNS processes when the Inspect subsystem is not running (that is, neither Visual Inspect
nor Inspect is available) (Figure 3). Note, however, that Native Inspect has only limited
capabilities for debugging TNS processes. See Debugging TNS Processes (page 27) for more
information.

20 Introducing Native Inspect

Figure 2 Debugger Selection for a TNS/E Native Process

Note that in Figure 3 there is no checking for the INSPECT setting (ON or OFF) for the process.
All TNS processes are given to the Inspect subsystem for debugging, so the INSPECT attribute has
no effect.

Process Debugging Using Native Inspect 21

Figure 3 Debugger Selection for a TNS Process Running on TNS/E

If you are using Native Inspect and the current process is a TNS process on a TNS/E system, the
capabilities available to you are described in Debugging TNS Processes (page 27).

Explicitly Starting Native Inspect
At the TACL prompt, invoke the Native Inspect object file (EINSPECT) explicitly, using the RUN
command, or implicitly, by entering the filename alone. Use the CPU option to select the CPU in
which the process you wish to debug is running.
For example, use the following procedure to start Native Inspect in CPU 2 in the Guardian
environment:
1. At the TACL prompt, invoke EINSPECT, as follows:

\SYSTEM.$D0117.INSPECT 1> einspect / cpu 2 /

2. The Native Inspect start up screen is displayed as follows:
TNS/E eInspect gdb Debugger [T1237 - 20-Dec-2011 16:43]
Copyright 2008 Free Software Foundation, Inc.
Copyright 2003-2012 Hewlett-Packard Development Company, L.P.

Native Inspect (based on GDB) is covered by the GNU General Public License.
Type "show copying" for conditions for changing and/or distributing copies.
Type "show warranty" for warranty/support information.

Working directory \PELICAN.$SYSTEM.STARTUP.
(eInspect 2,-2):

3. Enter debugger commands at the following system prompt:
(eInspect 2,-2): help

To start Native Inspect in CPU 2 in the OSS environment, enter:

22 Introducing Native Inspect

/G/SYSTEM/SYSTEM gtacl -cpu 2 -p einspect

(eInspect 2,-2):

After Native Inspect initializes, you must enter the attach command so that you can examine a
TNS/E native process. See the attach Command (page 66). The process must be running under
your user ID (or you must be either the super ID or the group manager of the user), and must be
running in the same CPU as the instance of Native Inspect you started.
To examine a snapshot file after starting Native Inspect, use the snapshot command. See the
snapshot Command (page 117).
For more information about starting Native Inspect and about accessing source and loading
symbols, in addition to an extended example of a Native Inspect session, see Chapter 2: Using
Native Inspect.

Reading the Custom File

NOTE: Native Inspect does not execute commands in the custom file if you specify the “no custom”
(nocstm) option.

When Native Inspect initializes, it reads the contents of its custom file, named EINSCSTM, located
in your logon default $vol.subvol on the TNS/E host. This file can contain Native Inspect
commands that you want to take effect during initialization. For example, you might establish your
typical debugging environment by including a number of set commands. See the set Command
(environment) (page 110).
Only a limited subset of Native Inspect commands are allowed to be specified in the EINSCSTM
file. These include (but are not limited to) the following commands: set, show, priv, define,
document. Process control and execution control commands are not allowed to be specified in
the EINSCSTM file.

Using the Command Prompt to Identify the Current Process
After Native Inspect initializes, it displays its command prompt. The Native Inspect prompt contains
the name eInspect, the CPU number, and the process identification number (pin) of the current
process or debugging target.
For example, the following prompt indicates that process 0,301 is the current process:
(eInspect 0,301):

The current process is the process to which all debugging commands apply and the process for
which Native Inspect waits for events.
When Native Inspect has no current process, the command prompt includes the CPU number and
“-2” as the process number. For example:
(eInspect 3,-2):

Native Inspect Command Abbreviations and Command Alternates
You can truncate Native Inspect command names provided that the abbreviation is not ambiguous.
Ambiguous abbreviations are allowed. For example, the letter s is defined as an abbreviation for
the step command even though many other command names begin with s. Use the help command
to display command information. See help Command, help Option (page 83).
Some commands have alternate forms such as the disassemble command, which has the alternate
form da. Where applicable, these alternate forms are identified in the headings of each command,
such as: disassemble (da) Command (page 75).

Process Debugging Using Native Inspect 23

Debugging Multiple Processes
Native Inspect provides support for debugging multiple TNS/E native processes in both the Guardian
and OSS environments. Native Inspect does not provide the same level of multiprocess debugging
capabilities that Inspect has traditionally provided and that is available on TNS/E systems by
debugging with Visual Inspect.
Multiprocess debugging is easiest using either Visual Inspect or separate instances of Native Inspect.
If you use Native Inspect for multiprocess debugging, you can choose either of the following
strategies:

• Use a separate Native Inspect instance for each process so that you are issuing debug requests
from separate terminal sessions.

• Use one instance of Native Inspect for all processes so that one process is the current process
and the other processes are in the background.

Debugging Two Processes With One Instance of Native Inspect
Suppose that you are running Native Inspect and are debugging a process (this is the “current
process” of the debugger, or the debugging target). Another process will automatically be given
to your existing instance of Native Inspect if a TNS/E native process causes a debugger to be
invoked, and the TNS/E process is running in the same CPU and has the same user ID as your
current process (or if you are using the super ID).
Two processes are then under the control of one instance of Native Inspect. See Example of Using
Multiple Instances of Native Inspect (page 26).

Using One Instance of Native Inspect to Debug Multiple Processes
You need to be mindful of which process is the current process (as indicated by the CPU,pin in
the eInspect prompt). With Native Inspect, most debugging options (such as the directory search
path) are defined as attributes of the debugger instance, not as values associated with the current
process.
Suppose that you are debugging two interacting processes. If you are stepping execution in process
A, which causes a breakpoint in process B to be hit, process B becomes the current process.
Advancing execution in process B might then result in completion of the step of process A, causing
it once again to be the current process.
In this situation, you will see the process ID of process A (3,301) displayed in the Native Inspect
prompt, and then the process ID of process B in the next prompt from Native Inspect (3,38). For
example:
(eInspect 3,301): step
(eInspect 3,38):

Considerations for Multi-Process Debugging

• Native Inspect can debug only those processes that are executing in the same CPU in which
the instance of Native Inspect is running.
For example, if a TNS/E native process running in CPU 3 calls Debug, and Native Inspect is
invoked as the debugger, the instance of Native Inspect must run in CPU 3.

• Native Inspect checks only for events at times when events are expected for the current
process—such as after process execution commands (or the wait command). Native Inspect
cannot receive events while prompting for user input.
Debugging events that occur for other processes are not necessarily reported when they occur,
but are reported when Native Inspect checks for events for the current process.

• Pressing the Break key interrupts waiting for a debugging event and redisplays the Native
Inspect command prompt, but cannot be used to interrupt other commands.

24 Introducing Native Inspect

• When debugging multiple programs, Native Inspect, like Inspect, sets the designated current
process to be the process for which the most recent debugging event has been reported. The
current process is the process to which all commands apply and for which Native Inspect
waits for events.

• Use the vector command to explicitly change the designated current process.

• In a rare situation, two instances of Native Inspect can be running on different CPUs but be
prompting the same home terminal. In this situation, you should do the following:
1. Start another Native Inspect instance on one of the CPUs.
2. Attach the process being debugged in that CPU to the new Native Inspect instance.
3. Detach that process from the original Native Inspect instance.

• Use the info command with the sessions option to display information about the processes
Native Inspect is currently debugging.

• You cannot use the automatic display list (expressions that are automatically displayed by the
display command when program execution is suspended) when you are debugging multiple
processes.

Identifying Additional Processes
Native Inspect informs you that it has control of another debugging target after you do one of the
following:

• Enter a process-control command (which causes Native Inspect to wait for events), such as
the continue command, finish command, next command, nexti command, step
command, stepi command, and until command.

• Enter the wait command.

• Press the Break key.
In this case, when you use Native Inspect to debug multiple processes, the current process is the
one for which the most recent debugging event has been reported.

Using a Separate Instance of Native Inspect for Each Process
If you have two processes under the control of one instance of Native Inspect, you can transfer
one of the processes to another instance of Native Inspect as follows:
1. Start a new Native Inspect instance on a different terminal session, specifying the same CPU

as the original instance of Native Inspect as follows:
TACL> status *, term
Process Pri PFR %WT Userid Program file Hometerm
$Z160 3,301 123 R 000 8,12 $SYSTEM.SYS00.EINSPECT $ZP1.#PHF

TACL> einspect /cpu 3/

Each terminal session defines a different “home terminal”. However, you can transfer a process
to a Native Inspect instance on a different terminal session as long as the new instance of
Native Inspect is running in the same CPU and under the same user ID.
Remember that while you are debugging this second process on a different terminal session,
the home terminal for the process itself remains unchanged, and the process might attempt to
prompt or output to its home terminal, causing more contention. Because of this potential
problem, use Visual Inspect as the preferred debugger for multiprocess debugging.

2. Transfer the current process to the new Native Inspect instance as follows:
a. From the new Native Inspect instance, enter the attach command.
b. From the original Native Inspect instance, release the current process (the newer debugging

target) by entering the detach command.

Debugging Multiple Processes 25

Example of Using Multiple Instances of Native Inspect
You are running Native Inspect in CPU 3 and are debugging the process
$DISK1.MYSUBVOL.MYPROG (CPU,pin=3,301). A second debugging target named
$DISK2.SVOL2.YOURPROG (CPU,pin=3,32) is assigned to your instance of Native Inspect.
After a debugging event is reported for the new current process, the following command prompt
indicates that the current process has changed:
(eInspect 3,301):
 < debugging event is reported here >
(eInspect 3,32):

To have a separate Native Inspect instance for each process being debugged, you need to attach
the new process (3,32) to a new Native Inspect instance, and then detach the process from the
original Native Inspect instance as follows:
1. Start a second Native Inspect instance in a different terminal session but running on the same

CPU:
TACL > einspect / cpu 3/
(eInspect 3,-2):

2. Using this new Native Inspect instance, enter an attach command, specifying the process
ID of the process you want to transfer as follows:
(eInspect 3,-2): attach 32

The attach command does not complete until you perform the final step (detach).

3. Using the original Native Inspect instance, enter the detach command as follows:
(eInspect 3,32): detach

The preceding detach command releases the new process to the attaching Native Inspect
instance and allows the original process back to its original instance of Native Inspect.

4. The new terminal session indicates that the attach has completed, and process 3,32 is the
current process for the new instance of Native Inspect:
(eInspect 3,-2): attach 32

Symbols read in for program loadfile
\PIPPIN.$D0117.TESTS.ODISP3.

Process (3,32) received DS_EVENT_ENTER_DEBUG
(eInspect 3,32):

You now have two instances of Native Inspect attached to each of the two programs being
debugged in CPU 3.

Global Debugging
A privileged user (the super ID user) can set one or more global breakpoints (breakpoints set in
code that is shared by multiple processes, such as DLLs). Any process that encounters the global
breakpoint comes under the control of Native Inspect. Such a debug session is defined as global
debugging.

Native Inspect Is the Global Debugger
On the TNS/E system, only Native Inspect can do global debugging, and only one global
debugging session can exist in a CPU at any one time. The Native Inspect instance that sets a
global breakpoint is implicitly registered as the global debugger in that CPU when the first global
breakpoint is set, and the Native Inspect instance is deregistered when the last global breakpoint
is removed.
Global debugging is privileged debugging and is also a special case of multiprocess debugging
(see Debugging Multiple Processes (page 24)). The super ID user must use one instance of Native

26 Introducing Native Inspect

Inspect (that is, the registered global debugger) to debug all processes in a CPU that encounter
the global breakpoints.

Considerations for Global Debugging

• Privileged mode must be enabled before you can set breakpoints in or examine privileged
code. You must logon with the super ID and explicitly enable privileged mode debugging by
entering the priv command.

• To set a global breakpoint, you must enable privileged debugging and then specify the -g
flag when setting a breakpoint. Global breakpoints are triggered by any process that executes
the code on which the breakpoint is set.

• Global debugging mode begins when the first global breakpoint is set, and ends when the
last global breakpoint is deleted. While global debugging is in effect, all other debugging in
the CPU is suspended.

• Native Inspect detects debugging events only when it is waiting. The debugger cannot detect
debugging events when prompting the user for input. For this reason, you should periodically
issue the wait command so that Native Inspect can detect any debugging events that might
have occurred. When waiting, you can press the Break key to redisplay the command prompt.

• The super ID has the unique ability to vector to and examine processes running in the current
CPU without establishing a debugging session with that process.

CAUTION: Use the super ID’s vector capability with care. The process might be executing,
and you cannot use execution control commands or commands that alter the process state.

• When privileged debugging mode is enabled, the attach command issues a DEBUGNOW
request instead of a DEBUG request.

Debugging TNS Processes
Native Inspect does not support debugging TNS processes nor TNS snapshot files. However, a
TNS process may come under the control of Native Inspect when the Inspect subsystem (T9226)
is not running.
If a TNS process becomes the current process in Native Inspect, you can do the following:

• Create a snapshot of the TNS process for later analysis with Visual Inspect or Inspect (using
the save command)

• Display a stack trace of the TNS process (using the bt command)

• Continue execution (using the continue command)

• Transfer the TNS process to Inspect once the Inspect subsystem is started (using the switch
command)

• Stop the TNS process or exit the debugger (using the kill command)
For TNS programs that are executing OCA-generated TNS/E code, Native Inspect can debug the
program, nonsymbolically, at the TNS/E machine level. You can use commands such as continue,
finish, next, step, and until. Native Inspect applies the commands to the underlying TNS/E
native view rather than to the TNS process itself. Also, the bt command can display a TNS stack
trace.

Debugging Snapshot Files
A process snapshot file or snapshot is a disk file that is an image of a process, its data, and its
status at the moment it was saved. Snapshot files are analogous to the core files on UNIX systems.
Snapshot files have file code 130. You can use all three debuggers (Native Inspect, Visual Inspect,
and Inspect) to debug snapshot files (Inspect refers to snapshot files as save files).

Debugging TNS Processes 27

Creating a Snapshot File
You can create snapshot files in several ways, as follows:

• Using the save command (Native Inspect)

• Using the Save Snapshot command (Visual Inspect)

• Using the SAVE command (Inspect)
Snapshot files are also created by the snapshot server (INSPSNAP) if the SAVEABEND attribute for
a process is ON and the process abends.

Opening a Snapshot file
Use the Native Inspect snapshot command to open a snapshot file, providing a read-only view
of the state of the process that the snapshot represents.
To open a snapshot file, start Native Inspect and then enter the following command:
(eInspect 3,301): snapshot $disk3.mysubvol.myprog

where $disk3.mysubvol.myprog is the name of a TNS/E native snapshot file (file code 130)
located on the TNS/E system.

Snapshot File Considerations

• You can examine only one snapshot file at a time, and you cannot debug a process at the
same time. You cannot execute any Native Inspect commands that would alter the state of the
snapshot, or commands that would execute a process, such as step or continue. Such commands
report an error during snapshot analysis.

• If the snapshot was created in a different location from its present location, you might need
to manually load symbols for loadfiles (using the symbol command or symbol-file
command,) and set a source search path (using the dir command).

Debugging DLLs
Dynamic-link libraries (DLLs), which contain position-independent code (PIC), are the standard user
libraries on TNS/E systems. DLLs can be implicitly loaded by the system when a program is started
or explicitly loaded and unloaded by program calls to dlopen() and dlclose(), respectively.

Suspending Process Execution on DLL Events
You can use the LOAD and UNLOAD options with the catch command to gain control when a DLL
is loaded or unloaded, respectively.

Listing DLLs
Native Inspect maintains a list of the loadfiles that compose the current program. You can display
the list of loadfiles by entering the info command with the dll option.

Loading Symbols for DLLs
Native Inspect automatically loads symbols for the program file and for explicitly loaded DLLs. You
must explicitly load symbols for other DLLs using the symbol command or symbol-file command.
To explicitly add additional symbol files at a specific address, use the add-symbol-file
command.

Addressing Symbols for DLLs Loaded at Another Address
If a user loads a symbol file for a DLL before a program call to dlopen() to load the DLL, Native
Inspect uses the preferred address of the DLL as the basis for symbol address calculations. Then,

28 Introducing Native Inspect

when the DLL is loaded, Native Inspect again attempts to load the symbols using the actual load
address for the DLL.

Setting Breakpoints
Native Inspect does not support the ability to set breakpoints on DLL functions before the DLL is
loaded; you must wait until the DLL is loaded. Use the add-symbol-file command if you want
to specify the base address relative to which symbolic addresses are calculated.

Debugging Memory Problems
You can use the Native Inspect debugger to find memory leaks, view heap usage, and detect
related problems.
The following memory-related errors can occur in an application:

• Heap corruption

• Memory leaks

• Access errors
The memory leak detection functionality is only available when using the memory leak detection
special library, ZRTCDLL (in 32-bit)/YRTCDLL (in 64-bit), found in the $SYSTEM.SYSnn subvolume.
The library must be specified as an "interpose library" when the application is run using the lib
option.
For example, if the application does not specify the ZRTCDLL library, it will get the following
message:
(eInspect 1,598):set heap-check on
ZRTCDLL library not found. To use runtime checking this library
must be specified using the "lib" option.

To avoid this message, the application must be run with the lib option. For example:
For 32-bit application:
rund application /lib $system.sys00.zrtcdll/

For 64-bit application:
run –debug –lib=/G/system/sys00/yrtcdll application

NOTE: If your application already uses an interpose library, it is not possible to add the memory
leak detection library and thus obtain memory leak detection functionality.

Heap Corruption
A heap corruption occurs when an application erroneously overwrites some of the data in the
heap. Heap corruption can result in data corruption, memory corruption, or both. When an
application inadvertently uses the erroneously overwritten data in the heap, it results in data
corruption in the application. Data corruption can lead to unpredictable program behavior. The
data corruption in the heap can lead to memory corruption if the corrupted data in the heap is
used by memory management functions in the application to allocate, access, or deallocate memory
blocks.
In other words, memory corruption occurs when the corrupted datum in the heap is accessed as
a pointer. Memory corruptions compromise the data integrity of the application and can result in
segmentation violations if the erroneously allocated or accessed memory blocks are out of the
bounds of the virtual memory of the application.

Memory Leaks
A memory leak occurs when an application fails to free allocated memory. As a result, the kernel
frees the memory that is allocated by a process only when the process terminates. If the program
leaks memory on a continual basis, the virtual memory requirement for the process continues to

Debugging Memory Problems 29

increase and this can result in serious consequences for long-running applications and memory
intensive applications.
Memory leaks can also cause fragmentation of the heap. This slows down the allocation,
de-allocation, and access of memory blocks and can eventually cause the application to fail with
out-of-memory errors.
You should suspect a memory leak in an application if the system runs out of swap space, runs
slower, or both. Memory leaks in an application increase the memory consumption in an application.
When the memory consumed by the application exceeds the resource limits set by the kernel, the
application fails with out-of-memory errors.

NOTE: For programs compiled at all optimization levels, a memory leak may be reported at a
line in the code that does not match the actual leak location. This only happens when the memory
allocation and the leak happen in the same block of statements containing no control flow (which
is not common).

Access Errors
Memory access errors can occur under the following conditions:
• When reading uninitialized local, or heap data

• When reading or writing to nonexistent or unallocated memory

• When a stray pointer overflows the bounds of a heap block, or tries to access a heap block
that is already freed to cause buffer overruns and underruns

• When reading or writing to memory locations that are already freed in the program

Commands For Interactive Memory Debugging
You can use the memory leak detection commands, described in Chapter 4: Native Inspect
Command Syntax, to debug memory problems through Native Inspect.
For more information on memory debugging with Native Inspect, see the Debugging Dynamic
Memory Usage Errors Using HP WDB white paper and the Debugging with GDB manual at the
HP WDB Documentation webpage: http://www.hp.com/go/WDB. Native Inspect's implementation
of memory debugging is similar to that of WDB.

Handling Events
When Native Inspect receives an event, it informs you what event has occurred and then updates
the debugging context (that is, information specific to the current process, such as breakpoints,
loaded DLLs, and the current register values).
The type of events that have the most impact on debugging with Native Inspect are debugging
events, which typically suspend a program under debugger control. For example, a breakpoint is
a debugger-induced debugging event.
Specific responses to significant events are listed in Table 6.

Assessing Your Location After an Event
If you are uncertain about your current program location after an event occurs, you can list the
current frame by using the frame command, or the select-frame command as follows:
(eInspect 6,679):frame
#0 test_complexTypes() () at \SYS03.$D007.SYMBAT1.SCXXTST:424
424 printf("%s test_complexTypes\n", getStepPrefix(1));

30 Introducing Native Inspect

http://www.hp.com/go/WDB

Table 6 Event Handling by Native Inspect

Response by Native InspectEvents

Displays current code location (PC) and prompts user for input. (For TNS
code breakpoint, displays the current native code location.)

Breakpoint events
Instruction breakpoint
Instruction step
TNS instruction breakpoint
MAB
Process entered event
Process entered debug event

Creates a debug session with the process (attaches to the process); makes
the process the current process; displays the current code location and

Entering debug events
Process created in debug
Process puts itself in debug prompts the user for input. (For the embedded breakpoint in a TNS process,

displays the native code location.)Process forced into debug
Process executes embedded
Breakpoint (TNS process)

Responds according to the preferences set with the mh command. Actions
include handing control to the user, printing a message, and forwarding the

Signal event
Process signalled

signal to the program. (Native Inspect gains control of the current process
at the point of signal generation, before signal handler setup code is invoked.)

Detaches from the current process and notifies you that the session was
terminated because the current process died. If Native Inspect is debugging

Process death event
Process death

one or more additional processes, no current process is designated as the
current process. If there are no other processes and Native Inspect was started
automatically, Native Inspect stops. If you started the debugger, Native
Inspect continues to prompt.

Receives process death event and terminates its session with the current
process (the one that called exec). If the newly created process is running

OSS exec event
OSS exec

in the same CPU as Native Inspect and tdm_execve was used with the
debug option, then Native Inspect receives the process entered debug
event and attaches to the new process.

Switching Between Debuggers (Inspect and Visual Inspect)
If you need to use features that are unique to another debugger, you can switch to a different
debugger as shown in Table 7.

Table 7 Commands for Switching Debuggers

CommandSwitch ToSwitch From

switch command.Inspect or Visual Inspect
(according to Debugger

Native
Inspect

Selection Criteria
(page 20))

Switch to System Debugger command in Visual Inspect (switches to Native
Inspect).

Native InspectVisual Inspect

ADD PROGRAM command in Inspect (receives process from Visual Inspect).Inspect

SELECT DEBUGGER DEBUG command in Inspect (transfers process to
Native Inspect) or you can use the attach command in Native Inspect.

Native InspectInspect

Open Program command in Visual Inspect (receives the process from
Inspect).

Visual Inspect

Breakpoint attributes are not passed between debuggers. When you switch debuggers, Native
Inspect preserves the breakpoints that you have set in the current process, along with any conditions
associated with the breakpoints, including ignore counts or disabling of a breakpoint. When you
switch back to Native Inspect, the breakpoint conditions, ignore-counts, and disable attribute are
reinstated just as they were when you switched control of the process.

Switching Between Debuggers (Inspect and Visual Inspect) 31

When you switch to another debugger and return to Native Inspect the breakpoint status is as
follows

• Breakpoint attributes are preserved for existing breakpoints.

• Breakpoints that you deleted using the other debugger are deleted from Native Inspect's
breakpoint list.

• Breakpoints that you added using the other debugger are added to Native Inspect's breakpoint
list, with default attribute values.

Stopping Native Inspect
If you started Native Inspect automatically to debug a process, (that is by means of the RUND
command), Native Inspect runs as a separate process from the current process being debugged.
It stops under the following conditions:

• When the current process stops, if Native Inspect was started automatically to debug a process,
that is by means of the RUND command.

• When you enter the exit command or the quit command to explicitly stop. Native Inspect
detaches from the current process and stops, leaving breakpoints in place. Note, however,
that if any of these breakpoints is subsequently hit, another debugger instance is automatically
started.

Differences Between Native Inspect and WDB and GDB
• WDB and GDB support a run command that is used to start a program from within the

debugger. Native Inspect, however, does not allow you to start a process from within the
debugger. You must start the process from a TACL or OSS prompt.
You can, however, use the attach command to attach an instance of Native Inspect to a
TNS/E native process. (Native Inspect also supports several commands, such as the vector
command, that are not supported by WDB or GDB.)

• Native Inspect does not support deferred breakpoints. In WDB and GDB, deferred breakpoints
can be set on functions before a program or library is loaded.

• You cannot call functions in the current process from Native Inspect.

• Native Inspect does not support threading (such as Standard POSIX Threads).

• Native Inspect supports debugging multiple processes, but WBD and GDB do not support
multiprocess debugging in the way that Native Inspect does.

32 Introducing Native Inspect

2 Using Native Inspect
Quick Start for Inspect Users

Table 8 lists the principal Native Inspect commands and their Inspect equivalents. This table is a
useful cross-reference for users familiar with Inspect commands.

• For a more complete list of Inspect commands and equivalent Native Inspect commands, see
Table 16 (page 136).

• For a list of Debug commands and their equivalent Native Inspect commands, see Table 15
(page 135).

Table 8 Principal Native Inspect Commands With Inspect Equivalents

Inspect CommandNative Inspect CommandTask

Program State Display Commands

sourcelistList program source

tracebtTrace stack frames

scope numberframe [frame-number] * 1Select a stack frame

display data-locDisplay a variable or evaluate an
expression

print var
or
print expression

m[odify] data-locModify a variable set [variable] expr value
or
print var=exp

Execution Control Commands

stepnextStep (over function calls) Step in (a
function call) Step out (of the current
function) step instep

step outfinish

b[reak] code-locb[reak] locspecSet a code breakpoint

b[reak] data-locmab {addr|var}Set a memory access breakpoint

clear bkpt-numdelete [bkpt-num]Delete a code breakpoint

clear numberdmabDelete a memory breakpoint

r[esume]continueResume execution

Machine State Commands

d[isplay] registers allDisplay registers info registers
or
info all-registers
or
info frame number

icode code-locdisassemble
[addr[addr]|func]

Display instructions

1 Native Inspect displays source and looks up variables relative to the selected frame.

Preparing to Debug Using Native Inspect
Before you can use Native Inspect for debugging, you need to do the following:

Quick Start for Inspect Users 33

1. Compile your program files, and transfer them to the TNS/E host if necessary.
2. Gain debugging control of a process by using Native Inspect.
3. Load symbols information for the current process, if necessary.
4. Optionally, configure a search path for source files.
These steps are described in more detail in the following sections.

Compiling and Transferring Program Files
You have the following options for compilation:

• The TNS/E host by using a resident compiler.

• A PC by using the Windows cross-compiler for HP NonStop systems.
Compile your code with optimization level 0 or 1 (code compiled with optimization level 2 cannot
readily be debugged). With optimization level 1, the following conditions apply:

• Statements might be deleted or merged.

• The debugger can display live data, but data no longer needed by the program might not be
available.

• Values often reside in registers, with write-through to memory.

• The debugger displays only values that are known to be true.
If you are developing your program on a remote TNS/E system or on a Windows PC, transfer
your files to the system where you will perform debugging. You will need the program files in
addition to the DLLs you are using.

Gaining Control of a Process Using Native Inspect
To start a program under control of the debugger, use the TACL RUND command:
TACL 2> rund nitest

The debugger that is invoked by the RUND command is determined by a set of rules described in
the section titled: Debugger Selection Criteria (page 20).
To debug a process that is running, use the TACL DEBUG command:
TACL 3> debug nitest , term $myterm

For complete information about other ways to gain control of a process using Native Inspect, and
for additional examples, see Starting Native Inspect (page 19).

Optionally Loading Symbols Information
To debug a process using a symbolic debugger such as Native Inspect, symbols information must
be loaded for the process you want to debug. When Native Inspect gains control of a process, it
attempts to load symbols for the process.
You will need to explicitly load symbols if you want to debug the following:

• A loadfile whose symbols have been stripped (typically done on production systems to minimize
file size). You must know the location of the identical version that contains symbols.

• Any DLLs that your program loads.
To load symbols, use the symbol command, symbol-file command, or add-symbol-file
command:
symbol-file filename

For example, if you enter an unqualified file name, the file must exist in the current working directory:
(eInspect 0,380): symbol-file xvod02a
xvod02a: No such file or directory.
(eInspect 0,380): symbol-file $d0101.qagarth.xvod02a
Reading symbols from $d0101.qagarth.xvod02a...done.

34 Using Native Inspect

You must enter separate symbol commands for all files of interest, using one symbol command
to load the symbols for your program file, and separate symbol commands for each DLL.
Native Inspect automatically reads in symbol table information for DLL loadfiles that are loaded in
response to the dlopen() system call. Similarly, the symbol table is automatically discarded if the
DLL is unloaded using the dlclose() system call.

Understanding Global versus Per-Process Symbol Files
When Native Inspect loads a symbol file, by default the symbols are available only to the current
process. Such a symbol file has per-process scope.
Specifying the -g (global) option when loading a symbol file gives the symbol file global scope.
The symbols are then available to all processes being debugged by a single Native Inspect instance.
Symbol files with global scope are useful for NonStop system symbols and for shared DLLs.
For example, if you want a symbol file to be associated with a shared DLL or library, the symbol
file needs to have global scope. Include the -g (global) option in your symbol-file command
or add-symbol-file command.
Any given symbol file can be loaded as both a global scope symbol file and a per-process scope
symbol file.

Specifying a Load Address for Symbol Files
Symbols are read in and assigned addresses based on the actual load address of the corresponding
loadfile, if it can be determined. Otherwise, the symbol addresses are based on the preferred load
address of the loadfile argument.
To override the preferred load address, use the add-symbol-file command and specify the
address at which the loadfile is loaded or where you expect it to be loaded. You should do this
when a DLL is loaded at a different address than the preferred load address. The info command
with the dll option displays the names of the loaded loadfiles along with related information,
including the addresses at which they are loaded.

Considerations for Locating Symbols

• Native Inspect does consistency checking of symbol files. That is, if you load symbols from
another file, Native Inspect checks versions or timestamps between the object file you specify
and the object file being executed.

• When Native Inspect does not display source file and line number information for a stack
frame, symbols are most likely unavailable for that frame.

• Native Inspect looks for symbols from symbol files associated with the current process. These
symbol files can have global scope or per-process scope.

Understanding How Native Inspect Locates Files
When automatically started as the selected debugger, Native Inspect, like Inspect, uses your logon
default subvolume (not your current working subvolume or directory) as its default subvolume. The
current working directory contains the process being debugged.
You can reduce confusion by immediately entering a cd command and setting the default subvolume
for Native Inspect to be your current working subvolume (that is, the subvolume where your source
files are stored). In the following example, it is $data1.mysubvol):
(eInspect 0,380): cd $data1.mysubvol

Native Inspect also maintains a source search path for locating source files. To specify the location
of your source, you can either use fully-qualified file names, or use the dir command to set a
source search path to the correct directory. For more information, see Optionally Configuring a
Search Path for Your Source Files (page 36).

Preparing to Debug Using Native Inspect 35

Optionally Determining the Compilation-Time Source File Name
If you are debugging on a different system from the one used for compiling, Native Inspect cannot
locate your source files at their originally compiled locations. For this reason, the list command
will not be able to list your program source and will report an error:
(eInspect 0,384): list
Unable to open file \SIERRA.$YOSE.MHG2.NITEST

Then you should add the current subvolume to the search path for source files, as described in
Optionally Configuring a Search Path for Your Source Files (page 36). For example:
(eInspect 0,384): dir $d0117.mysvol
Source directories searched: $d0117.mysvol:$cdir:$cwd
(eInspect 0,384): list
 35 char *new_ptr = "In print_and_break\n";
 36 int z = 7;
 37 printf ("About to call DEBUG'\n");
 38 DEBUG();
 39 }
 40 void main (void) {
 41 char *local_ptr = "From main";
 42 int local_q = 0;
 43 call1(local_ptr,local_q);
 44 }
(eInspect 0,384):

Optionally Configuring a Search Path for Your Source Files
Loadfiles contain the original compiled locations of their source files. If you have moved your files
between compilation and debugging, you must set a search path so that Native Inspect can locate
your source files.

Changing Paths
If the unqualified file names of your source files have not changed between compilation and
debugging, use the dir command to add entries to the directory search list that Native Inspect
uses to locate source files. For example:
(eInspect 0,330): dir $myvol.mysubvol

Changing File Names
If the unqualified file names of your source files change between compilation and debugging (for
example, when transferring source files from a PC to the system), use the map-source-name
command to define mapping rules. For example:
map-source-name fully-qualified-pathname=file | new-path

To display the current search path for source files, use the show command with the directories
option.
The search path you specify is global to all processes that you debug in a single session of Native
Inspect.

NOTE: If you specify an unqualified source file name with the map-source-name command,
Native Inspect automatically uses the directory search list to locate the file.

Advancing Execution to main() in C/C++ Programs
When you start a C/C++ program with a RUND (Guardian) or run -debug (OSS) command,
execution, by default, automatically advances to main(), and you can then examine the state of
your program at the beginning of the program. It is not necessary to set a breakpoint at main()
to get control at that point.

36 Using Native Inspect

You can change this default behavior by entering a set command (environment) with the
continue-to-main option set to off. You should include this command in the EINSCSTM file
(located in your default logon directory) so that it is executed during Native Inspect initialization.
If set continue-to-main off is specified, you must set a breakpoint at main() to stop
execution and examine the state of your program at that point, as in the following example:
(eInspect 0,330): b main
C:\mywin\home\myfiles\test\nitest.c, line 40.
(eInspect 0,330): c
Continuing.
Breakpoint 1 main () at C:\mywin\home\myfiles\test\nitest.c:40
40 void main (void) {
(eInspect 0,330): bt
#0 main () at C:\mywin\home\myfiles\test\nitest.c:40
#1 0x70000e60:0 in_MAIN 90 at \SPEEDY.$DATA06.T8432H01.CPLMAINC:68000
(eInspect 0,330):

Specifying set continue-to-main off is useful for debugging global constructors in a C++
program.

Sample Native Inspect Session (C++ Program)
The sample session described in this section demonstrates the tasks listed in Table 9.

Table 9 Sample Native Inspect C++ Program Session – User Tasks

Native Inspect CommandTask

dirSet search path for source files

listList source

breakSet a code breakpoint

tbreak

btTrace stack frames

nextAdvance execution

nexti

step

stepi

printDisplay a variable

setModify a variable

killEnd program and session

xDisplay memory in internal representation

Launching a C++ Program Under Native Inspect Control
The following example shows how to launch Native Inspect using the RUND command:
$DATA3 NITEST 30>rund nitest
TNS/E eInspect gdb Debugger [T1237 - 20-Dec-2011 16:43]
Copyright 2008 Free Software Foundation, Inc.
Copyright 2003-2012 Hewlett-Packard Development Company, L.P.

Native Inspect (based on GDB) is covered by the GNU General Public License.
Type "show copying" for conditions for changing and/or distributing copies.
Type "show warranty" for warranty/support information.

Working directory \PELICAN.$SYSTEM.STARTUP.
(Symbols read in for program loadfile \PELICAN.$DATA3.NITEST.NITEST.

Sample Native Inspect Session (C++ Program) 37

Added process (3,591).
Switching process (3,591) to eInspect from DMON
Process (3,591) created using DEBUG option.

(eInspect 3,591):

Listing the Source
The following example shows an attempt to display the source code using the list command:
(eInspect 3,591):list
\PIPPIN.$D0117.NITEST.GARTCC: No such file or directory.
(eInspect 3,591):dir $data3.nitest
Source directories searched: $data3.nitest:$cdir:$cwd
(eInspect 3,591):list
69 char *new_ptr = "In print_and_break\n";
70 int z = 7;
71 printf ("About to execute 'break 0x247'\n");
72 DEBUG();
73 }
74 void main(void)
75 {
75.1 char local_buf[80];
76 char *local_ptr1, *local_ptr2;
77 int local_q;

The output from the preceding example demonstrates the following:
• The source file could not be found at the location where it was compiled because the object

file was moved to another system.
• Because the source file name did not change, the dir command is used to instruct Native

Inspect to search the subvolume that contains a copy of the file.

Tracing the Stack
The following example shows a stack trace using the bt command:
(eInspect 3,591):bt
#0 main () at \PIPPIN.$D0117.NITEST.GARTCC:78
#1 0x700034d0:0 in _MAIN () at \SPEEDY.$RLSE.T8432H01.CPLMAINC:68

The output from the preceding example shows the entry for frame #0, identifying the current location
where the program is suspended.

Controlling Execution
The following example shows execution control, using the next, b, and c commands:
(eInspect 3,591):next
 78.1 strcpy(local_buf, "Hello world");
(eInspect 3,591):next
 78.2 local_ptr2 = local_buf;
(eInspect 3,591):b 79
Breakpoint 2 at 0x700012d0:1: file \PIPPIN.$D0117.NITEST.GARTCC, line 79.
(eInspect 3,591):c
Continuing.

Breakpoint 2, main () at \PIPPIN.$D0117.NITEST.GARTCC:79
 79 local_q = 0;

The output from the preceding example shows the following:
• The next command steps execution over function, procedure, and program unit calls.

• You can set a breakpoint on any source line number.

38 Using Native Inspect

Printing Variables and Memory
The following example shows how to print variables and display memory contents by using the
print and x commands:
(eInspect 3,591):print local_ptr1
$1 = 0x80001f0 "From main"
(eInspect 3,591):print /x &local_ptr1[0]
$2 = 0x80001f0
(eInspect 7,911):print local_ptr2
$10 = 0x6ffffedc "Hello world"
(eInspect 7,911):x /4 local_ptr2
0x6ffffedc: 72 'H' 101 'e' 108 'l' 108 'l'

The output from the preceding example shows the following:
• Use of the print command to print the values of variables.

NOTE: C/C++ character pointers are automatically dereferenced.

• Use of the x command to display memory in its internal representation.

Stepping Execution Into a Function
The following example shows how to step execution into a function by using the next, step, and
bt commands:
(eInspect 3,591):next
 80 call1(local_ptr1,local_q);
(eInspect 3,591):step
call1(char *, int) (string=0x0, q=0) at \PIPPIN.$D0117.NITEST.GARTCC:84
 84 {
(eInspect 3,591):next
 85 A1 a1;
(eInspect 3,591):bt
#0 call1(char *, int) (string=0x80001f0 "From main", q=0)
 at \PIPPIN.$D0117.NITEST.GARTCC:85
#1 0x70001320:0 in main () at \PIPPIN.$D0117.NITEST.GARTCC:80
#2 0x700034d0:0 in _MAIN () at \SPEEDY.$RLSE.T8432H01.CPLMAINC:68

The output from the preceding example shows the following:
• Use the step command to step execution into a function.

• Parameter values are not available until execution is stepped through function prolog code.

Setting a Memory Access Breakpoint (MAB)
The following example shows how to set a memory access breakpoint (MAB) by using the mab,
c, and print commands:
(eInspect 3,591):mab structure.a
No symbol "structure" in current context.
(eInspect 3,591):next
 86 printf("%s q = %d\n",string,q);
(eInspect 3,591):print a1
$3 = {
 a = 0x0,
 b = 0
}
(eInspect 3,591):mab a1.b

(eInspect 3,591):c
Continuing.
About to execute 'break 0x247'
Process (3,591) called DEBUG.
0x70001190:0 in print_and_break() () at \PIPPIN.$D0117.NITEST.GARTCC:72
 72 DEBUG();
(eInspect 3,591):c
Continuing.

Sample Native Inspect Session (C++ Program) 39

Process (3,591) received DS_EVENT_MAB (seg:65535, addr:0x6FFFFE44, pc:0x70002862
, len:4 type:1)
A1::func(char *, int) (this=0x6ffffe40, string=0x8000220 "From call1", c=1)
 at \PIPPIN.$D0117.NITEST.GARTCC:29
 29 }
(eInspect 3,591):print *this
$5 = {
 a = 0x8000220 "From call1",
 b = 1
}

The output from the preceding example shows the following:
• Use of the mab command to set a memory access breakpoint on a scalar variable.

• Before the memory access breakpoint is hit, the program calls DEBUG, after which execution
is resumed.

Stopping Mid-Statement
There are situations, for example stopping at a MAB, when the debugger is not stopped at the
starting instruction of a source statement. Native Inspect shows this "mid-statement" position by
prefixing an instruction address:
0x70001190:0 in print_and_break() () at \PIPPIN.$D0117.NITEST.GARTCC:72

Ending the Program and Debugging Session
The following example shows how to end the session by using the kill command:
(eInspect 3,591):kill
Kill the current process? (y or n) y
Process (3,591) exited with code 06.
Removed process (3,591).
eInspect is exiting...
Killed
TACL>

Sample Native Inspect Session (COBOL Program)
The sample session in this section illustrates the tasks shown in Table 10.

Table 10 Sample Native Inspect COBOL Program Session – User Tasks

Native Inspect CommandTasks

nextAdvance execution

nexti

step

stepi

breakSet a code breakpoint

tbreak

listList source

printDisplay a variable

setModify a variable

continueResume execution

killEnd program and session

Starting a Program Under Native Inspect Control
The following example shows how to start the session by using the RUND and next commands:

40 Using Native Inspect

DATA3 COBBAT 53> rund xcs000ds0
TNS/E eInspect gdb Debugger [T1237 - 20-Dec-2011 16:43]
Copyright 2008 Free Software Foundation, Inc.
Copyright 2003-2012 Hewlett-Packard Development Company, L.P.

Native Inspect (based on GDB) is covered by the GNU General Public License.
Type "show copying" for conditions for changing and/or distributing copies.
Type "show warranty" for warranty/support information.

TWorking directory \PELICAN.$SYSTEM.SYSTEM.
Symbols read in for program loadfile \PELICAN.$DATA3.COBBAT.XCS000D0.
Added process (3,1012).
Switching process (3,1012) to eInspect from DMON
Breakpoint 1 at 0x70001600:0: file \PELICAN.$DATA3.COBBAT.SCS000D, line 5.
(eInspect 3,1012):next
318 perform initialization thru initialization-exit.
Current language: auto; currently COBOL

The next command advances execution from the beginning of the program unit to the first
executable statement.

Listing Source and Setting a Breakpoint at a Line Number
The following example shows how to list source and set a breakpoint at a line number by using
the list and break commands:
eInspect 3,1012):list
 313
 314 PROCEDURE DIVISION.
 315
 316 MAIN SECTION.
 317 CALE-1-MAIN-PARA-1.
 318 PERFORM INITIALIZATION THRU INITIALIZATION-EXIT.
 319 PERFORM READ-SEQ1-TABLE THRU SEQ1-TABLE-EXIT 4 TIMES.
 320 IF ERROR-DETECTED
 321 PERFORM STOP-RUN.
 322 PERFORM READ-SEQ2-TABLE UNTIL EOF OR ERROR-DETECTED.
(eInspect 3,1012):break 319
Breakpoint 2 at 0x70001bd0:0: file \PELICAN.$DATA3.COBBAT.SCS000D, line 319.

The break (or abbreviated b) command sets a breakpoint at line 319 to suspend execution upon
return from the first PERFORM invocation.

Stepping Execution
The following example shows how to step through execution by using the step and next
commands:
eInspect 3,1012):step
 351 PERFORM OPEN-SEQ1-FILE.
(eInspect 3,1012):next
 352 IF SEQ1-FILE-ER THEN

The preceding example demonstrates the following:
• The step command steps execution into PERFORM invocations and calls to program units.

• The next command steps execution over PERFORM invocations and calls to program units.

• PERFORM invocations are not listed on the call stack.

Displaying a Level 88 Condition Name
The following example shows how to display a level 88 condition name by using the print and
continue commands:
77 SEQ1-FLAG PIC 9.
 88 SEQ1-FILE-ER VALUE 0.

Sample Native Inspect Session (COBOL Program) 41

 88 SEQ1-FILE-OPENED VALUE 1.

(eInspect 3,1012):print seq1-file-er
$1 = F
(eInspect 3,1012):print seq1-flag
$2 = 1
(eInspect 3,1012):print seq1-file-opened
$3 = T
(eInspect 3,1012):continue

Examining a Record
The following example shows how to examine a record by using the next, print, and p
commands:
Breakpoint 2, CALE-1 () at \PELICAN.$DATA3.COBBAT.SCS000D:319
 319 PERFORM READ-SEQ1-TABLE THRU SEQ1-TABLE-EXIT 4 TIMES.

(eInspect 3,1012): next
 320 IF ERROR-DETECTED

(eInspect 3,1012): next
 322 PERFORM READ-SEQ2-TABLE UNTIL EOF OR ERROR-DETECTED.

(eInspect 3,1012): print seq2-rec

$4 =
 NAME = "\000\000\000\000\000\000\000"
 FILLER = ""
 WORKS = "\000\000\000\000\000\000"
 FILLER = ""
 REST-OF-LINE = '\000' <repeats 33 times>

(eInspect 3,1012): next
 323 IF ERROR-DETECTED

(eInspect 3,1012): print name
Reference to NAME is not unique.
Add more qualification to disambiguate the reference.

(eInspect 3,1012): print name of seq2-rec
$5 = "JStrauss"

(eInspect 3,1012): print rest-of-line
$6 = "Gypsy Baron 1881Fledermouse 1879"

(eInspect 3,1012): print seq2-rec.works
$5 = "opera04"

(eInspect 3,1012): print seq2-rec
$7 =
 NAME = "JStrauss"
 FILLER = " "
 WORKS = "opera04"
 FILLER = " "
 REST-OF-LINE = "Gypsy Baron 1881Fledermouse 1879"

(eInspect 3,1012): p rtq1 in reclast
$11 = "RECL.R231"

(eInspect 7,320):p rtq4 in rtq3 in rtq2 in rtq1(4,2,3,5)
$51=
RTQ5="\100"
RTQ6="\100"
RTQ6="\000)"

42 Using Native Inspect

(eInspect 3,1012): p rtq6 of rtq3 in rtq1(4,2,3,4,2)
$67="GH"

The preceding example demonstrates the following:
• Record field names that are unique do not require qualification. Native Inspect reports an

error if the name is not unique.
• You can qualify field names using COBOL OF or IN syntax, or the Native Inspect period (.)

syntax.

Modifying a Record Field
The following example shows how to modify a record field by using the set command:
(eInspect 3,1012):set name of seq2-rec = "Bach"
(eInspect 3,1012):print seq2-rec
$4 =
 NAME = "Bach "
 FILLER = " "
 WORKS = "opera04"
 FILLER = " "
 REST-OF-LINE = "Gypsy Baron 1881Fledermouse 1879"

The preceding example demonstrates the following:
• Values are padded or truncated according to COBOL rules.

• Native Inspect ignores any JUSTIFIED clause on a data item.

Examining Tables
The following example shows how to examine tables by using various commands:
(eInspect 3,1012): print recording-data
$3 =
 WHO = (
 NAME = "Puccini "
 WORKS = (
 TITLE = "Sigfried "
 LISTING-INFO =
 CONDUCTOR = "Solti "
 PRICE = "$34,567.00"
 TITLE = "Boheme "
 LISTING-INFO =
 CONDUCTOR = "Walter "
 PRICE = "$34,572.00"
 NAME = "Massenet"
 WORKS = (
 TITLE = "Otello "
 LISTING-INFO =
 CONDUCTOR = "Davis "
 PRICE = "$34,577.00"
 TITLE = "Manon "
 LISTING-INFO =
 CONDUCTOR = "Rudel "
 PRICE = "$34,582.00"
 NAME = "Handel "
 WORKS = (
 TITLE = "Arabella "
 LISTING-INFO =
 CONDUCTOR = "Solti "
 PRICE = "$34,587.00"
 TITLE = "Cemele "
 LISTING-INFO =
 CONDUCTOR = "Walter "
 PRICE = "$34,592.00"

Sample Native Inspect Session (COBOL Program) 43

 NAME = "Bellini "
 WORKS = (
 TITLE = "Semiramide "
 LISTING-INFO =
 CONDUCTOR = "Davis "
 PRICE = "$34,597.00"
 TITLE = "Norma "
 LISTING-INFO =
 CONDUCTOR = "Rudel "
 PRICE = "$34,602.00"
(eInspect 3,1012): print title(1,2)
Reference to TITLE is not unique.
Add more qualification to disambiguate the reference.
(eInspect 3,1012): print title of works of who of recording-data (1,2)
$5 = "Boheme "
(eInspect 3,1012): print recording-data.who.works.title (1,2)
$7 = "Boheme "
eInspect 3,1012): print works of who of recording-data (1)
$6 = (
 TITLE = "Sigfried "
 LISTING-INFO =
 CONDUCTOR = "Solti "
 PRICE = "$34,567.00"
 DEALERS-CODE = 34572,
 TITLE = "Boheme "
 LISTING-INFO =
 CONDUCTOR = "Walter "
 PRICE = "$34,572.00"
 DEALERS-CODE = 34577)
(eInspect 1,301): ptype rec5
type = RECORD
R51 RECORD OCCURS 2 TIMES
R511 PIC X(16)
R512 PIC X(16)
R513 RECORD OCCURS 3 TIMES
R5131 PIC XXX
R5132 PIC XXX
(eInspect 1,301): p rec5
$40 =
R51 = (
R511 = "REC5.R51[1].R511"
R512 = "REC5.R51[1].R512"
R513 = (
R5131 = "111"
R5132 = "112",
R5131 = "111"
R5132 = "112",
R5131 = "111"
R5132 = "112"),
R511 = "REC5.R51[1].R511"
R512 = "REC5.R51[1].R512"
R513 = (
R5131 = "211"
R5132 = "212",
R5131 = "211"
R5132 = "212",
R5131 = "211"
R5132 = "212"))
(eInspect 1,301): p r513(2)
$43 = (
R5131 = "211"
R5132 = "212",
R5131 = "211"
R5132 = "212",
R5131 = "211"

44 Using Native Inspect

R5132 = "212")
(eInspect 1,301): p r5132(1,2)
$45 = "112"
(eInspect 2,924): p r5132(2,3)
$8 = "212"
(eInspect 1,305): ptype rec-a
type = RECORD
ITEM-A PIC 99
DATA-A PIC X OCCURS ITEM-A (MAX:10) TIMES
(eInspect 1,305): #
(eInspect 1,305): # Let's set DEPENDING ON parameter, i.e. "ITEM-A", to 5
(eInspect 1,305): #
(eInspect 1,305): set rec-a.item-a = 5
(eInspect 1,305): p rec-a
$4 =
ITEM-A = 05
DATA-A = ("A", "A", "A", "A", "A")
(eInspect 1,305): set rec-a.data-a(4) = "I"
(eInspect 1,305): p rec-a
$4 =
ITEM-A = 05
DATA-A = ("A", "A", "A", "I", "A")

The preceding example demonstrates the following:
• You can apply subscripts to an unqualified record element name as long as the name is unique.

• Subscripts are separated by commas and must always occur in the last item of the reference.

Setting a Breakpoint on a Nested Program Unit
The following example shows how to set a breakpoint on a nested program unit by using the b,
c, bt, and next commands:
(eInspect 3,1012):b cale-1.cale-1-1
Breakpoint 3 at 0x7000c200:2: file \PELICAN.$DATA3.COBBAT.SCS000D, line 588.
(eInspect 3,1012):c
Continuing.

Breakpoint 3, CALE-1.CALE-1-1 (ID-1=1, ID-2=10, ID-3=100,
 ID-4=1000, ID-5=10000, ID-6=1000000)
 at \PELICAN.$DATA3.COBBAT.SCS000D:588
 588 PERFORM CALE-1-1-TEST-1
(eInspect 3,1012):bt
#0 CALE-1.CALE-1-1 (ID-1=1, ID-2=10, ID-3=100,
 ID-4=1000, ID-5=100000, ID-6=1000000)
 at \PELICAN.$DATA3.COBBAT.SCS000D:588
#1 0x70008d00:0 in CALE-1 () at \PELICAN.$DATA3.COBBAT.SCS000D:437
(eInspect 3,1012):next
 589 PERFORM CALE-1-1-TEST-2

The preceding example demonstrates that you must qualify the nested program unit name with the
name of the enclosing program unit or units.

Debugging Copy Libraries
The following example shows how to debug copy libraries by using the list, b, c, and next
commands:
(eInspect 3,1012):list
 310 Test-SingleInclusion.
 311 DISPLAY " ".
 312 DISPLAY "Test-SingleInclusion: Begin".
 313 ?SOURCE CLIBCLB1(RANGE-110-112)
 314 DISPLAY " ".
 315 DISPLAY "Test-SingleInclusion: End".
(eInspect 3,1012):list CLIBCLB1:110
 105 02 ALPHA-A26 PIC A(26) VALUE "abcdef".

Sample Native Inspect Session (COBOL Program) 45

 106
 107
 108
 109 ?SECTION RANGE-110-112
 110 DISPLAY " CLIBCLB1: RANGE-110-112: line 110".
 111 DISPLAY " CLIBCLB1: RANGE-110-112: line 111".
 112 DISPLAY " CLIBCLB1: RANGE-110-112: line 112".
 113
 114
(eInspect 3,1012):b CLIBCLB1:110
Breakpoint 2 at 0x700063b0:0: file \YOSQA1.$DATA1.SHCOBAT.CLIBCLB1, line 110.
Breakpoint 3 at 0x70006f30:0: file \YOSQA1.$DATA1.SHCOBAT.CLIBCLB1, line 110.
Breakpoint 4 at 0x70007770:0: file \YOSQA1.$DATA1.SHCOBAT.CLIBCLB1, line 110.
(eInspect 3,1012):c
Continuing.

Breakpoint 2, COPYLIB-STATEMENTS () at \YOSQA1.$DATA1.SHCOBAT.CLIBCLB1:110
 110 DISPLAY " CLIBCLB1: RANGE-110-112: line 110".
(eInspect 3,1012):list
 105 02 ALPHA-A26 PIC A(26) VALUE "abcdef".
 106
 107
 108
 109 ?SECTION RANGE-110-112
 110 DISPLAY " CLIBCLB1: RANGE-110-112: line 110".
 111 DISPLAY " CLIBCLB1: RANGE-110-112: line 111".
 112 DISPLAY " CLIBCLB1: RANGE-110-112: line 112".
 113
 114
(eInspect 3,1012):next
 CLIBCLB1: RANGE-110-112: line 110
 111 DISPLAY " CLIBCLB1: RANGE-110-112: line 111".
(eInspect 3,1012):next
 CLIBCLB1: RANGE-110-112: line 111
 112 DISPLAY " CLIBCLB1: RANGE-110-112: line 112".
(eInspect 3,1012):next
 CLIBCLB1: RANGE-110-112: line 112
 314 DISPLAY " ".

The preceding example demonstrates the following:
• The list command, by default, lists source from the file that contains the statement at which

execution is suspended. It lists one file at a time and does not show the contents of included
files.

• You can view the contents of an included file by specifying the base file name and the line
number relative to the file you want to view.

• Specify the base file name and line number to set a breakpoint on a line in a copy library.
Native Inspect sets breakpoints at each program location where that copy library line is
included. Therefore, multiple breakpoints might be reported for each copy library line. Clear
any breakpoints that you do not need.

Terminating the Debugging Session
Use the kill command to terminate the process and debugging session:
(eInspect 3,1012):kill
Kill the current process? (y or n) y
Process (3,1012) exited with code 06.
Removed process (3,1012).
eInspect is exiting...
Killed
TACL>

If you want the process to continue execution, use the continue command followed by the exit
command to terminate the debugging session.

46 Using Native Inspect

3 Using Native Inspect With COBOL Programs
This section describes concepts and additional details for using Native Inspect with COBOL
programs.

Understanding how Native Inspect finds Data Items
Native Inspect follows COBOL scoping rules for finding data items specified in Native Inspect
commands. That is, Native Inspect attempts to find the item in the current program unit (the program
unit where execution is currently suspended). If Native Inspect cannot find the item in the current
program unit, it looks in containing program units if the data item is declared GLOBAL.
In nested program units, a data item declared in an inner program unit can “hide” a global data
item with the same name that is also declared in an outer program unit. When execution is
suspended in the inner program unit, the only way to access the item in the outer program unit is
to change the currently selected stack frame to the stack frame containing the outer item.

Handling of SOURCE and COPY Directives

Displaying Lines Included by SOURCE and COPY Directives
Native Inspect does not merge the source lines from SOURCE and COPY directives into the source
listed for a program unit. Therefore, when you enter a list filename:line-number command,
only the lines in the specified file are shown, and not the lines included by any SOURCE or COPY
directives in the file. To list any source lines that were copied by a nested SOURCE or COPY directive,
you must enter a separate list command for the file named in the directive.

Setting Breakpoints at Lines Included by SOURCE and COPY Directives
In a COBOL program that contains SOURCE and COPY directives, identical line numbers can
occur within a program unit. If, in a break command, you specify a line number with no
qualification, Native Inspect sets a breakpoint at each instance of that line number. To set a
breakpoint at a particular instance of a line number, you must qualify the line number with the
name of the containing file, using the filename:line-number notation.

Displaying Source Lines
In a program consisting of multiple files, Native Inspect handles the list command as follows:

• If the list command specifies a file name, Native Inspect lists the contents of that file.

• If the list command does not specify a file name, Native Inspect lists the contents of the last
source file listed since execution was last suspended.

• If no source file was listed since execution was last suspended, Native Inspect displays the
contents of the file where execution is currently suspended.

NOTE: Note the following conditions:
• Native Inspect does not expand SOURCE and COPY directives to list their source inline. To

display source lines included by SOURCE and COPY directives, use a separate list command,
as described under Displaying Lines Included by SOURCE and COPY Directives (page 47).

• The list command does not display the results of string substitution done by a REPLACE
statement or a REPLACING clause.

Understanding how Native Inspect finds Data Items 47

Specifying Variables and Tables

Specifying Variables
To reference a variable that is a unique member of only one record in a COBOL program, you
simply specify the variable name. For example, consider the following declaration in a COBOL
program:
01 REC.
 02 VAR NATIVE-2.
 02 STR PIC X(9).

As long as the variables are unique within the program unit, you can specify the variable VAR
and STR in any Native Inspect command that accepts a variable name. However, if a variable is
not unique within the program unit (that is, if the same variable name is declared in more than one
record), you must qualify the variable name. Qualify the record name by using the COBOL reserved
word as follows:
• IN.

• OF.

• Period (.) syntax.
For example, consider the following declaration:
01 REC.
 02 INT PIC X(10).
 02 VAR PIC X(10).
 02 REC2.
 03 INT PIC X(13).
 03 VAR2 PIC X(14).

The variable INT is defined in both REC and REC2. You would specify the variable INT that is
contained in REC2 in any of the following ways:
INT OF REC2
INT IN REC2
REC2.INT

When you use the period (.) syntax, the record name comes first, followed by the variable name.
(This use of the period is Native Inspect syntax, not COBOL syntax.)
When qualifying a non-unique variable name, you must specify only enough qualifiers to make
the variable reference unique. Thus, in the preceding declaration, you need not specify any of the
following:
• INT OF REC2 OF REC.

• INT IN REC2 IN REC.

• REC.REC2.INT.
If you specify a non-unique variable name without qualification or with insufficient qualification,
Native Inspect reports an error.

Specifying Tables
You reference individual table elements by specifying the table name followed by subscripts in
parentheses. For multidimensional tables, the subscripts are separated by commas. For example,
consider the following declaration:
02 TOTAL OCCURS 20 TIMES.
 03 TOTAL-A OCCURS 3 TIMES.

The following example refers to a specific element of the two-dimensional table TOTAL-A:
TOTAL-A (4, 2)

In Native Inspect, unlike in a COBOL program, you cannot use spaces as subscript separators.

48 Using Native Inspect With COBOL Programs

When referencing a multilevel table in Native Inspect, you can apply subscripts only to the last
item in the reference. For example, consider the following declaration:
01 VEHICLE.
 03 MODEL OCCURS 9 TIMES.
 05 STYLE OCCURS 12 TIMES.
 07 COLOR OCCURS 15 TIMES PICTURE 9(10).

Examples of valid table references are as follows:
MODEL (3)
STYLE OF MODEL (3,11)
COLOR OF STYLE OF MODEL (3,11,14)
MODEL.STYLE.COLOR (3,11,14)

You reference an entire table by specifying the table name without subscripts. For example, the
following command displays all elements of table TOTAL-A:
(eInspect 3,1012): print TOTAL-A

Subscripts are used to refer to specific instances of scalar variables that are part of a table of
records. For example, consider the following declaration:
01 MASTER.
 02 TABLE-1 OCCURS 5 TIMES.
 03 TABLE-2 OCCURS 5 TIMES.
 04 ELEMENT PIC X.

The following is an example of a reference to an instance of the scalar variable ELEMENT:
ELEMENT (3, 2)

This use of the comma is Native Inspect syntax, not COBOL syntax.

Specifying Tables With Variable Upper Bounds
You can declare COBOL tables with a variable upper bound. For example:
01 MASTER.
 03 TABLE OCCURS 5 TO 10 TIMES DEPENDING ON ITEM.

If, in a Native Inspect print command, you specify the table name with no subscripts to print the
entire table, Native Inspect evaluates the variable upper bound specified with the DEPENDING
ON keywords to determine the number of elements to display. However, in rare situations where
Native Inspect is unable to evaluate the variable upper bound, the table is displayed up to the
maximum specified by the OCCURS keyword.
For the preceding declaration, if you specify the following, then Native Inspect attempts to evaluate
the variable ITEM to determine the number of elements to display:
print TABLE

Specifying Level 88 Condition Names
You can attach a condition name to any data item. You specify a condition name the same way
as you would specify a member of a record. For example, consider the declaration:
01 REC.
 05 ITEM PIC 99.
 88 GOOD-ITEM VALUE 10 THRU 20.

You could specify the following:
GOOD-ITEM OF ITEM OF REC

Alternatively, omit any qualifiers not required for uniqueness, just as you would for any other data
item.
You can also attach a condition name to a table or to a member of a record that is a table. In that
case, you must specify a subscript with the condition name. To evaluate the condition name, specify
the same subscript on the condition name as you would for the condition variable name. For
example, consider the following declaration:

Specifying Variables and Tables 49

01 REC.
 02 TABLE OCCURS 4 TIMES.
 03 ITEM PIC 99.
 88 ITEM-OK VALUE 12.

Any reference to ITEM-OK requires a subscript because any reference to ITEM requires a subscript.
For example, the following command evaluates and displays the second instance of ITEM-OK:
(eInspect 3,1012):print ITEM-OK(2)

Displaying Variables
Native Inspect follows COBOL rules for displaying numeric, alphanumeric, and edited data items.
Considerations are:

• Native Inspect does not allow the use of the PICTURE clause to format variables for display.

• You can display a variable in a different radix by using the FORMAT clause of the print and
x commands, as described in the section:Performing Machine-Level Debugging (page 54).

Displaying Level 88 Condition Names
Native Inspect displays Level 88 condition names as one of the values ‘T’ or ‘F’. The value displayed
depends on the value of the variable to which the condition belongs. For example, consider the
following declaration:
77 VAR PIC S99 VALUE 1.
 88 COND-1 VALUE 1.
 88 COND-2 VALUE -1.

The following Native Inspect commands display the values indicated:

displays the value ‘T’ because the value of COND-1 matches the value of
VAR.

print COND-1

displays the value ‘F’ because the value of COND-2 does not match the
value of VAR.

print COND-2

displays the actual value stored in VAR; in this case the value is 1.print VAR

Displaying Argument Values
By default, Native Inspect displays only the addresses of program and function arguments when
a breakpoint is encountered, a backtrace is done, or execution steps into a function. To display
the actual argument values on the occurrence of any of these events, specify the following command:
(eInspect 3,1012): set print cobol-arg-values on

Displaying Unprintable Characters
COBOL support is improved to display unprintable characters and substring searches. In previous
releases, Native Inspect would display unprintable characters using C programing format. For
example, a character with a value of 0 was displayed as \000. In this release, unprintable
characters are printed using COBOL Hexadecimal Nonnumeric Literals. For example, a character
with a value of 0 now displays as follows: X”00”.

Displaying the Length of the COBOL Variables
You can display the length of the COBOL variables using the print length command:
print length cobol-variable (or) print length (cobol-variable)

To print the length of an individual table element, subscript the table element. For example, consider
the following declaration:
01 MASTER.
 02 TABLE-1 OCCURS 5 TIMES.

50 Using Native Inspect With COBOL Programs

 03 TABLE-2 OCCURS 5 TIMES.
 04 ELEMENT PIC X.

(eInspect 1,821):print length MASTER
$2 = 25
(eInspect 1,821):print length (MASTER.TABLE-1(1))
$3 = 5
(eInspect 1,821):print length TABLE-2(1,1)
$4 = 1

For tables with a variable upper bound, the maximum length of the table is displayed irrespective
of the value of the data item specified in the DEPENDING ON clause. For example, consider the
following declaration:
 01 MASTER.
 03 ITEM PIC 99 VALUE 7.
 03 TABLE4 OCCURS 5 TO 10 TIMES DEPENDING ON ITEM.
 05 ITEM-5 PIC 99.

 (eInspect 1,807):print length MASTER
 $6 = 22

Handling of REDEFINES and RENAMES
Native Inspect treats variables named in a REDEFINES or RENAMES clause the same as other
variables in the record. Thus, when Native Inspect displays a record, the REDEFINE and RENAME
variables are also shown. For example, consider the following declaration:
01 REDEF.
 02 NAME PIC A(30).
 02 OTHER-NAME REDEFINES NAME.
 03 FIRST-NAME PIC A(20).
 03 LAST-NAME PIC A(10).
 66 FNAME RENAMES FIRST-NAME.
 66 LNAME RENAMES LAST-NAME.

The print REDEF command displays all items in the record, including OTHER-NAME, FNAME,
and LNAME, as follows:
 NAME=...
 OTHER-NAME=
 FIRST-NAME=
 LAST-NAME=...
 FNAME=...
 LNAME=...

Assigning Values to Data Items

Assigning Values to Variables
Native Inspect provides two ways of assigning values to data items:

• Using the set command.

• Using the print data-item = value command.
Native Inspect follows COBOL rules for assigning values to numeric and alphanumeric variables.
Some considerations are:

• Native Inspect follows COBOL rules for truncation and padding, but ignores the JUSTIFIED
clause.

• When assigning a numeric value to an alphanumeric item, the numeric item is treated as an
alphanumeric item with digits moved from left to right.

• Native Inspect does not allow assignment to EDITED data items.

Handling of REDEFINES and RENAMES 51

• If the name of a variable is the same as a Native Inspect option recognized by the set
command, you must use either the print command with the assignment operator or the
variable clause of the set command to assign a value to the variable.

• The maximum size of a numeric literal is 18 decimal digits, 16 hexadecimal digits, or 22
octal digits.

Changing the Radix of Numeric Literals
The default radix of a numeric literal is base 10. You can use the following notations to change
the value of a numeric literal:

• Oxvalue – Specifies a hexadecimal value.

• Onumber – Specifies an octal value.

Considerations when Changing the Radix

• Native Inspect does not support the COBOL syntax for hexadecimal literals (H”value”).

• You cannot change the radix of an alphanumeric literal.

Assigning Values to Level 88 Condition Names
You cannot modify a level 88 condition name. For example, consider the following declaration:
01 REC.
 02 TABLE OCCURS 4 TIMES.
 03 ITEM PIC 99.
 88 ITEM-OK VALUE 12.

You cannot assign a new value to ITEM-OK. You can change only the value of the underlying
data item, in this case, the level 03 item ITEM.

Assigning Values to Tables and Records
You can assign multiple values to items that compose a table or record by specifying a list of values
separated by commas and enclosed in braces ({}). For example, consider the following declaration:
01 MASTER.
 02 TABLE-1 OCCURS 2 TIMES.
 03 TABLE-2 OCCURS 3 TIMES.
 04 ELEMENT PIC X.

The following command assigns values to all six occurrences of ELEMENT:
(eInspect 3,1012): set ELEMENT={2, 5, 1, 8, 0, 4}

The values of the elements of ELEMENT are as follows:
• ELEMENT(1,1) = 2

• ELEMENT(1,2) = 5

• ELEMENT(1,3) = 1

• ELEMENT(2,1) = 8

• ELEMENT(2,2) = 0

• ELEMENT(2,3) = 4

You can nest table and record assignment by using multiple pairs of braces, as shown in the next
example. Assume the following declaration:
01 rec6.
 02 array Native-2 occurs 10 times.
 02 another2 Native-2.

The following command assigns and prints the two tables in record rec6:

52 Using Native Inspect With COBOL Programs

(eInspect 1,1032): print rec6={{1,2,3,4,5,6,7,8,9,10}12}
$1 =

ARRAY = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
ANOTHER2 = 12

If, in an assignment, you specify more values than there are elements in the table, an error is
generated. If you specify fewer values, the assignment terminates when all values in the list are
used.
You cannot assign a value to an entire table or record by specifying a single value. For example,
assuming the preceding declaration, the following command generates an error:
eInspect n,n:set ELEMENT=0

The following command sets only ELEMENT (1,1) to zero:
eInspect n,n:set ELEMENT={0}

Assigning Values to Character Strings
The following syntax is supported by Native Inspect:
01 REC.
 02 MYSTRING PIC X(10).

The following command assigns a value to the entire string MYSTRING:
(eInspect 3,1012): set MYSTRING="Hello!!!!!"

If, in this example, you specify the following command, the character string is padded with spaces
on the right according to the same rules used by the COBOL MOVE statement:
(eInspect 3,1012): set MYSTRING="Hello"

The following command prints 2 characters starting at index 1:
(eInspect 3,1012): print MYSTRING(1:2)

The following command prints a substring of MYSTRING starting at index 2 until the end:
(eInspect 3,1012): print MYSTRING(2:)

The following command modifies two characters:
(eInspect 3,1012): print MYSTRING(1:2) = "XX"

Native Inspect supports the COBOL string concatenation operator (&). For example, assume the
following declaration:
01 REC
 02 ASTRING PIC X(4).

The following commands assign a value to ASTRING using concatenation, then displays the string
value:
(einspect 0,434):set ASTRING “AB” & “CD”
(einspect 0,434):print ASTRING
$6 = “ABCD”

Evaluating Expressions
Native Inspect supports COBOL arithmetic expressions and a subset of COBOL conditional
expressions, and follows COBOL rules for evaluating these expressions as follows:
• Arithmetic operators are as follows:

+
-
*
/
**

• Conditional expressions use the following operators:

Evaluating Expressions 53

GREATER
NOT GREATER
LESS THAN
NOT LESS THAN
EQUAL TO
NOT EQUAL TO

• Conditional expressions use the following logical operators:
AND
OR

• The following symbols are supported:
>
<
<>
<=
>=

If a variable is specified as the result of an expression, Native Inspect stores as much of the result
as possible as allowed by the variable’s type.
Native Inspect does not allow the use of the following in expressions:
• Intrinsic functions.

• Class conditions.

• Sign conditions.

• Switch-status conditions.

• Abbreviated conditions.

Displaying Data Item Types
You display the type of a COBOL data item in Native Inspect by using the ptype and whatis
commands. Wherever possible, types are displayed as declared in the COBOL program, with
these exceptions:

• Level 88 condition names are shown as type bool, since there is no corresponding COBOL
type.

• The PICTURE string shown for edited items is PIC X(length).

Performing Machine-Level Debugging
Native Inspect provides a full set of commands for machine-level debugging. These commands
enable you to perform such low-level tasks as examining memory, examining registers, and listing
machine-level instructions. One such command, the x command, provides a special form for use
with COBOL programs. The x command, when used with the ADDRESS OF option, is useful for
generating memory dumps. This command has the following form:
x /format ADDRESS OF variable

where format specifies a repeat count, the format to use, and the size of the variable to be
examined; and variable specifies the starting address of the memory dump.
For more information about the x command, see x Command (page 125)

Controlling Execution
You control execution of a program by setting breakpoints at locations in the program where you
want execution to be suspended. As discussed previously, you can identify locations in a COBOL

54 Using Native Inspect With COBOL Programs

program using program unit and paragraph names, in addition to source line numbers. When
program execution is suspended, you can resume execution by entering the continue command.
A program executes until one of the following conditions is true:

• It encounters a breakpoint.

• It calls the DEBUG or PROCESS_DEBUG_ procedure.

• It generates a trap.

• It terminates.
You can also use the following Native Inspect commands to incrementally advance program
execution:

• step: This command advances program execution one verb at a time. Execution steps into
any PERFORM or program unit invocations executed within the step range.

• next: This command advances program execution one verb at a time. Execution steps over
any PERFORM or program unit invocations executed within the step range.

• finish: This command executes the current process until execution either returns from the
current program unit or encounters a debugging event.

The following considerations for execution control might apply:
• Stepping behavior depends on compiler code generation and can vary slightly with different

compiler versions.
• You cannot use the finish command to step execution out of a PERFORM. To step out of a

PERFORM, you can set a breakpoint at the return location and then continue execution until
that breakpoint is encountered.

Controlling Execution 55

4 Native Inspect Command Syntax
Categories of Native Inspect Commands

In Table 11, Native Inspect commands are grouped as follows:
• Command Line Options, such as: help and nocstm.

• Utility Commands, such as: files and dir.

• Session Control Commands, such as: attach (detach) and switch.

• Snapshot Commands, such as: save and snapshot.

• Process Control Commands, such as: continue and next.

• Execution Control Commands, such as: ih and mh.

• Breakpoint Commands such as: break (tbreak), and enable (disable).

• Display and Modify Commands, such as: break(tbreak), and enable(disable).

• Stack Commands, such as: downand up.

• Object and Symbol File Commands, such as: symbol, and ptype.

• Memory Management Command, where the sole command is vq.

• Memory Leak Detection Commands, such as: info heap-check, set heap-check and
show heap-check, with their various options.

Table 11 Native Inspect Command Functions

FunctionGroup Name and Command Name

Command-Line Options

Displays the syntax of all the command-line options.help Command, help Option

Specifies that Native Inspect is not to process the EINSCSTM custom file.nocstm Option

Displays version information about GDB, Tcl, and Native Inspect.version Option

Utility Commands

Displays attributes associated with an address.amap Command

Sets the base for numeric input and output.base Command

Changes the current working directory.cd Command

Introduces a comment line.comment (#) Command,
(comment) Command

Modifies the search path for source files.dir Command

Evaluates an expression and displays the result in several bases.eq Command

Redisplays a previous command for editing and reexecution.fc Command

Displays the files in the current working directory.files (ls) Command, ls (files)
Command

Displays information about files that have been opened by the current program.fopen Command

Displays help information about Native Inspect commands.help Command, help Option

Displays information about the debugging target.info Command

Turns session logging on or off.log Command

56 Native Inspect Command Syntax

Table 11 Native Inspect Command Functions (continued)

FunctionGroup Name and Command Name

Defines mapping rules between the source file names at compilation time and at
debug time.

map-source-name (map) Command

Prints the current working directory.pwd Command

Ends the Native Inspect session.quit (exit) Command,
exit (quit) Command

Sets environment settings for Native Inspect.set Command (environment)

Displays environment settings for Native Inspect.show Command

Reads commands from a file.source Command

Displays the version of Native Inspect and Tcl.version Option

Prints file, function, and line information for the specified (text or data) symbol.which Command

Session Control Commands

Associates Native Inspect with the specified process.attach Command

Disassociates Native Inspect from the current process or from a specified process.detach Command

Controls the privilege level of the working session (super ID user only).priv Command

Transfers the current process to Visual Inspect or to Inspect.switch Command

Changes the process designated as the current process.vector Command

Waits for the next Debug event or for a Break key event.wait Command

Snapshot Commands

Creates a snapshot file (also known as a save or saveabend file) of the current
TNS/E or TNS emulated process.

save Command

Opens a TNS/E native process snapshot file for analysis.snapshot Command

Process Control Commands

Continues the execution of the current process.continue Command

Executes the current process until execution returns from the currently selected
frame.

finish Command

Suspends the current process so that you can perform debugging operations.hold Command

Resumes execution at the specified location.jump Command

Terminates the current process.kill Command

Advances program execution by one or more statements but steps over any
function calls.

next (nexti) Command

Advances program execution by one or more statements, stepping into any called
functions.

step (stepi) Command

Continues execution of the current process until a specified location is reached
or until the current stack frame returns.

until Command

Execution Control Commands

Modifies signal handlers for a specified signal.mh Command (modify handler)

Displays information about signal handlers.ih Command (info handler)

Breakpoint Commands

Sets a code breakpoint (temporarily, in the case of tbreak) at a specified line,
function, or address.

break (tbreak) Command

Categories of Native Inspect Commands 57

Table 11 Native Inspect Command Functions (continued)

FunctionGroup Name and Command Name

Sets a logical breakpoint on a specified event.catch Command

Specifies commands that Native Inspect is to execute when a specified breakpoint
is hit.

commands Command

Specifies a conditional expression that Native Inspect is to evaluate when a
specific breakpoint is hit.

condition Command

Deletes code breakpoints.delete Command

Disables specified breakpoints.disable Command

Deletes a memory access breakpoint (MAB).dmab Command

Enables breakpoints that have been disabled.enable Command

Sets the number of breakpoint hits you want Native Inspect to ignore before
reporting a specified breakpoint.

ignore Command

Sets a memory access breakpoint (MAB).mab Command

Display and Modify Commands

Displays memory in ASCII format.a (an) Command

Displays memory in a specified format.dn Command

Displays a range of memory as instructions.disassemble (da) Command

Deletes an expression from the automatic display list.delete display Command

Disables automatic display items.disable display Command

Adds an expression to the automatic display list.display Command

Enables automatic display items that have been disabled.enable display Command

Displays environment information about a process.env Command

Searches for a value (finds a number) in the virtual address space of the current
process.

fn Command

Displays memory as instructions.in Command

Changes the content of memory.modify (mn) Command,
info Command with the registers
option

Displays the value of a specified expression without saving it to the value history
list.

output Command

Evaluates and displays the value of a specified expression, saving the result on
the value history list.

print Command

Displays registers.reg Command

Evaluates an expression and assigns the resulting value to a variable.set Command (variable)

Examines memory at a specified address.x Command

Stack Commands

Prints a backtrace of all the stack frames.bt (tn) Command,
tn (bt) Command

Selects the stack frame that is called by the currently selected stack frame.down (down-silently) Command

Selects a specified stack frame.frame (select-frame) Command

Displays information about frames and registers.info Command with frame option

58 Native Inspect Command Syntax

Table 11 Native Inspect Command Functions (continued)

FunctionGroup Name and Command Name

Traces the stack from a TNS/E native jump buffer (tj command) or a ucontext
buffer (tu command) contained at the specified address.

tj Command,
tu Command

Selects the stack frame that called the currently selected stack frame.up (up-silently) Command

Object and Symbol File Commands

Add additional symbol file information.add-symbol-file Command

Lists source code.list Command

Prints detailed information about a specified data type.ptype Command

Opens a TNS/E native code file to build up internal symbol tables.symbol-file (symbol) Command

Discards all the symbol data associated with a specified file name.unload-symbol-file Command

Displays the data type of a specified expression.whatis Command

Memory Management Command

Displays information about the extended segments allocated by the current process
or changes the currently viewed selectable segment.

vq Command

Memory Leak Detection Commands

Displays information about the corruption, heap, and leaks options of the
info command, used to view memory problems.

info Command (memory leak
detection)

Displays information about the set heap-check command and its attributes,
used to debug memory problems.

set heap-check Command (memory
leak detection)

Shows the heap-check option, used to view memory problems.show Command

User-Defined Commands

The define command defines a command, commandname, specified by the
user.

define Command

Documents the user-defined command, commandname, so that it can be accessed
by help.

document Command

Displays definitions (but not documentation) of user-defined commands.show user (see show Command)

Syntax of Common Command Elements
This section describes the following:

• Syntax of locspec

• Syntax of native-address

• Syntax of llce (low-level conditional expression)

• Syntax of expression

• Syntax of /format

Syntax of locspec

NOTE: locspec is sometimes referred to as linespec in files and documents that are used
by or related to Native Inspect.

Syntax of Common Command Elements 59

locspec

Use locspec to do the following:
• Specify a single source line with the list command to display source lines.

• Specify where to set a code breakpoint with the breakpoint command.
You can specify locspec using any of the following forms:
line-number

Specifies a line number in the current file.
filename:line-number

Specifies a line number in the specified source file filename.
function

Specifies the line at which the body of the specified function begins.
filename:function

Specifies the line at which the body of the specified function begins in the given file
filename. Note that you need to use this option only to avoid ambiguity when identically
named functions are in different source files.

*address

Specifies the line containing the specified program address. address can be any decimal
or hexadecimal expression; the format is assumed to be decimal by default.

Specifying Code Locations for pTAL Programs
When debugging a pTAL program, you can also use the following notation to specify a code
location within a subprocedure:
procedure[.subprocedure] ...

Specifying Code Locations for COBOL Programs
When debugging a COBOL program, you can also identify a code location using paragraphs,
line numbers, program units (including nested program units), instructions, and sections. To specify
one of these code locations, use one of the following notations in the line specification:
program-unit[.program-unit] ...
[section.]paragraph
paragraph [[in\of] section]

These syntax elements enable you to qualify the code location in cases where the code location
is not unique within the program.
eal

60 Native Inspect Command Syntax

NOTE:
• In a paragraph number, the leading zero is significant.

• If locspec consists entirely of digits, and that string of digits matches both a paragraph name
and a line number in the program unit, Native Inspect uses the paragraph name. To specify
the line number in this case, use the filename:line-number notation.

• COBOL paragraph names need not be unique within a program unit. To differentiate among
paragraphs with the same name, specify a qualified paragraph name using the
section.paragraph or paragraph [[in\of] section] notation. If you specify a
paragraph name that is not unique within a program unit, Native Inspect issues an error
indicating that the name is ambiguous and that further qualification is required.

• Native inspect does not support the program-unit.label, or
program-unit.line-number notation.

• Native Inspect does not support setting breakpoints on statement ordinals.

Syntax of native-address
native-address

A 32-bit or 64-bit address. You can specify a native-address by using the following formats:
• Hexadecimal (for example, 0x120001DC0)

• Decimal (for example, 48331845824)

• Octal (for example, 044000016700)
If the address is in the range of 0 through 0xFFFFFFFF, it is sign-extended to form a 64-bit
address.

Example 1 Examples of native-address

Consider the following examples:
• 0x80000 & 0x72000000

If the address is greater than 0xFFFFFFFF, it is treated as a 64-bit address, and no sign
extension is done.

• 0xFFFFC5000000

The output format for native-address is 0xnnnnnnnnnnnnnnnn with leading zeros
included.

Syntax of llce
llce

A low-level conditional expression, used for setting conditional breakpoints with the break(see
break (tbreak) Command (page 67)) and mab command (see mab Command (page 97)).
Low-level conditional expressions are evaluated by the operating system rather than the
debugger, yielding faster conditional breakpoint performance. Their capabilities are more
limited, however, than those of high-level conditions, which you can use with the condition
command (seecondition Command (page 71)).
The syntax is:
-e native-address[& mask] operator value

Where:

Syntax of Common Command Elements 61

mask

A 64-bit mask that will be ANDed with the contents of native-address before the test is
performed with value.

operator

The operator is one of the following strings:
• !=

• ==

• <

• >

value

An integer.

Syntax of expression
expression

A list of operands and operators which, when evaluated, result in a number or a string. Valid
operators are those accepted by the source language in which the target being debugged is
compiled.
Native Inspect does not support expressions in pTAL. To specify pTAL expressions, use C-style
syntax:

COBOLC-StylepTAL

AX = A1/A2 + A3 * A4x = y;x := y;

FLAG = (A NOT EQUAL TO B)flag = (a != b);flag := (a<>b);

Using C-style pointers:pTAL pointer example:

To display the address, enter:int x[0:9];
int .xptr;

p xptr
...
@xptr ;= @x[0];
... To dereference ptr (display what

xptr points to), enter:
p *xptr

Variable names are not case-sensitive.Variable names are case-sensitive.Variable names are not
case-sensitive.
(To make Native Inspect recognize
pTAL variable names, use the set
Command (environment) with the
language ptal option.)

For additional COBOL considerations, see Evaluating Expressions (page 53).
Other valid expressions are:
$, $$

refers to the last two values printed. For example, print $$ redisplays the next-to-last value
printed.

$number

refers to results of previous print commands, which are saved on the value history list. For
example, print $1 redisplays the previous value printed (the output associated with $1),
and print $5 redisplays the output associated with $5.

62 Native Inspect Command Syntax

$register-name

displays the contents of the specified register. For example, print $pc displays the contents
of the $pc register.

Syntax of /format
/format

A repeat count, followed by a format letter and a size letter in any order as follows:
/[count][format][size]

count

An integer specifying the number of units of size to display or print.
format

Specifies the format to use for the display, as follows:

MeaningFormat Specification

octalo

hexadecimalx

decimald

unsigned decimalu

binaryt

floatf

addressa

instruction (ICODE)i

charc

null terminated strings

size

Specifies the unit size as follows:

MeaningSize Specification

byteb

half word (16 bits)h

word (32 bits)w

giant (64 bits)g

For example, 10bx means 10 repetitions of one byte in hexadecimal.
The /format options are used in the following commands:
• x command (examine), see x Command (page 125).

• print command, see print Command (page 103),

• output command, see output Command (page 103).
The print and output commands do not accept the following format specifications:
• i

• s

Syntax of Common Command Elements 63

• Any size letter.

• A repeat count of more than 1.

Specifying Pathnames in Native Inspect Commands
Certain Native Inspect commands require you to specify either an OSS pathname or Guardian
file name. Here are the rules Native Inspect follows for resolving pathnames and determining the
current working directory.

Resolving Pathnames
If you specify an OSS or Guardian absolute pathname, that pathname is used regardless of whether
the current working directory is an OSS or a Guardian working directory.
If you specify an OSS or Guardian relative pathname, it is resolved to an absolute pathname
according to the current working directory. Thus, if the current working directory is an OSS absolute
pathname, Native Inspect resolves the relative pathname to an OSS absolute pathname. Likewise,
if the current working directory is a Guardian absolute pathname, Native Inspect resolves the
relative pathname to a Guardian absolute pathname.

Identifying the Default Current Working Directory
The default current working directory is as follows:

• When you start Native Inspect from either the OSS environment (by using the
gtacl -p eInspect command) or from the Guardian environment (by using the eInspect
command at the TACL prompt), the current working directory has the Guardian format.

• When a process is placed under Native Inspect control, the current working directory has the
OSS format for an OSS process, and the Guardian format for a Guardian process. In normal
operations, a process is placed under Native Inspect control when:
◦ You enter a RUND or RUNV command from the Guardian TACL prompt

◦ You enter a run -debug command from the OSS shell.

◦ You enter an attach command from the Native Inspect command prompt. See attach
Command (page 66).

◦ The process calls the DEBUG() procedure.

• Opening a snapshot file has no affect on the current working directory, regardless of whether
the process in the snapshot file is an OSS process or a Guardian process.

• Commands displaying output containing pathnames are not affect by the current working
directory. These commands always display the format returned by the particular command.

• You can switch the current working directory from OSS format to Guardian format, and vice
versa, by using the cd Command.

(comment) Command
An alias for the comment (#) Command, used to embed a comment in a Native Inspect command
line.

a (an) Command
A Debug-compatible Tcl command that displays memory in ASCII format.
a native-address [count]

Where:

64 Native Inspect Command Syntax

native-address

This is the address in memory that you want to display in ASCII. See Syntax of native-address
(page 61).

count

This is the amount of memory to display. The default value is one byte.

add-symbol-file Command
Reads debugging symbols from the specified loadfile (file code 800). This command enables you
to optionally specify the base address relative to which symbol addresses are computed. The new
symbol data is added to the existing data. For more information, see Optionally Loading Symbols
Information (page 34).

Related Commands
The symbol-file command (see symbol-file (symbol) Command (page 119)) allows you to load
a symbol file, but does not allow you to specify the address at which to load symbol.
add-symbol-file [-g] [-readnow] pathname [address]

Where:
-g

Loads a symbol file with global scope so that symbols are visible to all processes being
debugged.
Entered without the -g option, loads a symbol file with per-process scope so that symbols are
visible only to the current process.
If there is no current process, the added symbol file has global scope, and the -g option is
optional.

-readnow

Expands the symbol table immediately rather than incrementally as needed.
pathname

The OSS pathname or Guardian file name of the TNS/E native code file (with file code 800)
that Native Inspect is to open and from which Native Inspect will load symbols.

address

The load address relative to which symbols should be rebased. This is optional for DLLs only.
See Debugging DLLs (page 28) for more information

The add-symbol-file command prompts you before reading in the loadfile’s symbols regardless
of whether you include an address argument. The prompt displays the address at which Native
Inspect will base the symbols. If you reply No, the command is aborted. If you reply Yes, the
symbols are read in.

amap Command
Displays attributes associated with a specified address.
amap address

Examples
(eInspect 4,1010): amap 0x8000290
pcKind = 19
(eInspect 4,1010): amap 0x70000000
pcKind = 8 ReadOnly Code ElfText PrivToWrite

add-symbol-file Command 65

attach Command
Associates Native Inspect with a specified process that must be executing in the same CPU as the
Native Inspect process. The attach command enables you to debug a running process using
Native Inspect.
attach [pin] | [$process-name]

Where:
pin

The process ID (process number) of the process you want to attach. The command fails if you
specify an invalid or nonexistent pin. To attach to a running OSS process, you must use its
Guardian process ID.

$process-name

The name of the process or process-pair you want to attach. The command fails if you specify
an invalid or nonexistent process name. For process-pairs, Native Inspect attaches to either
the primary or backup process of a process-pair depending on the CPU in which the Native
Inspect process is being executed. To attach to the primary process of a process-pair, Native
Inspect must be running in the same CPU as the primary process. If the backup process is
executing in the same CPU as the Native Inspect process, Native Inspect prompts you for
confirmation before attaching to the backup process.

The attach command issues a PROCESS_DEBUG_ request for the specified process, and Native
Inspect then waits for the next debugging event. (When privileged debugging is enabled, the
attach command specifies the DEBUGNOW option.)
Then when the process enters debug, Native Inspect receives the debugging event, creates a
session for the process (adding the process to the set of processes being debugged), and makes
the process the current process.
If a debugging event occurs for another process when Native Inspect is waiting (that is, between
the time you enter the attach command and when the specified process enters debug), that other
process then becomes the current process.

Example
See Example of Using Multiple Instances of Native Inspect (page 26).

base Command
A Debug-compatible Tcl command that sets the default base for numeric input and output.
The base command is an alias for the set command with the radix, input-radix, and
output-radix options. See set Command (environment)
base {input|output} {HEX|OCT|DEC}

Where:
input

Sets the base used for numeric input.
output

Sets the base used for numeric output.
HEX

Sets the base in hexadecimal.
OCT

sets the base in octal.
DEC

Sets the base in decimal.

66 Native Inspect Command Syntax

break (tbreak) Command
The break command sets an instruction breakpoint for the current process, at a specified line,
function, or address. The tbreak command is similar, but sets a temporary breakpoint that is
deleted after it is hit.
Related Commands: Use the enable command (see enable Command (page 78)) and disable
command (see disable Command (page 75)) to enable and disable breakpoints, respectively.
{break|tbreak} [locspec] [flags] [-e llce | if cond-exp]

Where:
locspec

The location at which you want to set a breakpoint. See Syntax of locspec (page 59).
flags

Either or both of the following:
-g

Indicates a global breakpoint, which can be set only by the super ID user after issuing the
priv command. See priv Command (page 108).

-h

Indicates a halt loop breakpoint, which can be set only by the super ID user after issuing
the priv command. See priv Command (page 108).

llce

A low-level conditional expression (cannot be specified with the -h flag). See Syntax of llce
(page 61).

cond-exp

A language expression that produces an integer or Boolean result.
For COBOL-specific considerations, see Evaluating Expressions (page 53).

Setting Conditional Breakpoints
You can set a conditional breakpoint with the break or tbreak command by including either an
llce (a low-level conditional expression, which is evaluated by the breakpoint interrupt handler)
or a source language expression (evaluated by the debugger). In either case, the breakpoint is
reported only if the expression evaluates to True or a nonzero result. Otherwise, execution of the
program continues. For information about specifying llce, see Syntax of llce (page 61).
You can also use the condition Command to associate a condition with a previously set breakpoint.

Setting Global Breakpoints
Global breakpoints are breakpoints that are set using the -g option. Setting global breakpoints
has the following constraints:
• You must be logged on as the super ID.

• You must turn on privileged mode by using the priv command. (See priv Command
(page 108).)

• The operation is exclusive. No other user can perform global debugging at the same time.
A global breakpoint is triggered by any process that executes the code on which the global
breakpoint is set.

NOTE: Set global breakpoints when debugging a problem in code that is shared by multiple
processes. However, use global breakpoints with care because they might result in numerous
processes being suspended in the debugger.

break (tbreak) Command 67

Examples
• To set code breakpoints:

(eInspect 1,325): b 216
Breakpoint 1 at 0x70001670:2: file \SIERRA.$YOSE1.SYMBAT1.SCXXTST, line 216.
(eInspect 1,325): b test_complexTypes
Breakpoint 2 at 0x70003700:0: file \SIERRA.$YOSE1.SYMBAT1.SCXXTST, line 420.

• To set a code breakpoint in a COBOL nested program unit:
(eInspect 4,668): b main.main-level2
Breakpoint 1 at 0x70002280:2: file \SIERRA.$DIVA.CBDEMO, line 41.

• To set a breakpoint on a qualified paragraph in a COBOL program:
(eInspect 4,751): b first-para of last-section
Breakpoint 1 at 0x70004500:2: file \SIERRA.$DIVA.CBDEMO, line 41.

(eInspect 2,640):b Para1
Breakpoint 2 at 0x70003be0:0: file \SIERRA.$DIVA.CBEX.CBEXAM1, line 75.

(eInspect 2,640): b Para2 OF Sec2
Breakpoint 3 at 0x70004440:0: file \SIERRA.$DIVA.CBEX.CBEXAM1, line 97.

(eInspect 2,640): b Sec3.Para2
Breakpoint 4 at 0x70004a20:0: file \SIERRA.$DIVA.CBEX.CBEXAM1, line 109.

• To list breakpoints:
(eInspect 1,325): info break
Num Type Disp Enb Address What
1 breakpoint keep y 0x70001672 in main
 at \SIERRA.$YOSE1.SYMBAT1.SCXXTST:216
 2 breakpoint keep y 0x70003700 in test_complexTypes
 at \SIERRA.$YOSE1.SYMBAT1.SCXXTST:420

For COBOL programs, the info breakpoints command displays the paragraph and
section names along with the module and file information, if the breakpoint is placed on the
paragraph or section.
(eInspect 2,640):info break
Num Type Disp Enb Glb Address What
2 breakpoint keep y n 0x70003be0 at PARA1 in MAIN-PROGRAM
 at \SIERRA.$DIVA.CBEX.CBEXAM1:75
3 breakpoint keep y n 0x70004440 at PARA2 OF SEC2 in MAIN-PROGRAM
 at \SIERRA.$DIVA.CBEX.CBEXAM1:97
4 breakpoint keep y n 0x70004a20 at PARA2 OF SEC3 in MAIN-PROGRAM
 at \SIERRA.$DIVA.CBEX.CBEXAM1:109

• To define and list conditional breakpoint:
(eInspect 1,329): b 352
Breakpoint 1 at 0x70002540:0: file \SIERRA.$YOSE1.SYMBAT1.SCXXTST, line 352.
(eInspect 1,329): condition 1 pcb->pin == 2
(eInspect 1,329): info break
Num Type Disp Enb Address What
1 breakpoint keep y 0x70002540 in pcbDataStructs_initialize
at \SIERRA.$YOSE1.SYMBAT1.SCXXTST:352
stop only if pcb->pin == 2

• To set a breakpoint at a code address:
(eInspect 3,663):b *0x70002c40:2
Breakpoint 3 at 0x70002c40:2: file \SIERRA.$YOSE1.SYMBAT1.SCXXTST, line 372.
(eInspect 3,663):c
Continuing.

Breakpoint 3, 0x70002c40:2 in pcbDataStructs_initialize ()
 at \SIERRA.$YOSE1.SYMBAT1.SCXXTST:372
 372 PCB_addAttribute(pcb, PCBAttribute_createNonstop(PCBList.entry[11]));

• To define and list a MAB:
(eInspect 0,294): mab globStr.f2 -c
Memory access breakpoint 2 (mab)
(eInspect 0,294): info break

68 Native Inspect Command Syntax

Num Type Disp Enb Glb Address What
2 mem access brk keep y n globStr.f2 -c

bt (tn) Command
Prints a backtrace of all stack frames. Frame numbers are preceded by a number sign, (#).
Alias: tn.
{bt|tn} [count]

Where:
count

An integer that displays a backtrace of the innermost count frames. If you specify a negative
count, then a backtrace of the outermost -count frames is displayed.

Consideration for Debugging TNS Processes
Although Native Inspect does not debug TNS processes, the bt command displays a TNS stack
trace.

Example
To display the current frame:
(eInspect 4,770):bt
 #0 pcbDataStructs_initialize () at \SIERRA.$YOSE1.SYMBAT1.SCXXTST:362
 #1 0x700016a0:0 in main (argc=1, argv=0x8003010)
 at \SIERRA.$YOSE1.SYMBAT1.SCXXTST:217
 #2 0x700011f0:0 in _MAIN () at \SPEEDY.$RLSE.T8432H01.CPLMAINC:68

catch Command
Sets a logical breakpoint on a specified event (a catch event). A catch event is similar to a
breakpoint except that a catch event is associated with a logical event rather than a code location.
catch event

Where:
event

The event on which the process will be held. Supported events are:
• STOP – Holds the process on a stop event.

• ABEND – Holds the process on an abend event.

• LOAD [dllname] – Holds the process on the loading of a DLL. If you specify dllname,
the process is held when the specified DLL is loaded. If you omit dllname, the process is
held when any DLL is loaded.

• UNLOAD [dllname] – Holds the process on the unloading of a DLL. If you specify
dllname, the process is held when the specified DLL is unloaded. If you omit dllname,
the process is held when any DLL is unloaded.

Catch events are treated as breakpoints and each catch event has an associated breakpoint
number. You can use all the breakpoint-related commands to manage catch events. This includes
the following:
• commands (see commands Command (page 70)).

• condition (see condition Command (page 71)).

• delete (see delete Command (page 73)).

• enable (see enable Command (page 78)).

bt (tn) Command 69

• disable (see disable Command (page 75)).

• info with the breakpoints option (see info Command (page 86)).
To display a list of current catch events, use the info command (see info Command (page 86))
with the breakpoints option.

Managing a Stopping Process (STOP and ABEND Events)
When a process triggers a STOP or ABEND event, the process is in a stopping state. You can
examine a process that is in a stopping state, but the process cannot execute any further. Execution
control commands are disabled when a process is suspended at a STOP or ABEND event. You can
use the save command to create a snapshot of a stopping process. See save Command (page 109).
You can switch a stopping process to another debugger by using the switch command. The
process is eventually given back to the original instance of Native Inspect, and the process will
still be in the stopping state. See switch Command (page 119).
After you examine a stopping process, you must use the continue, detach, or kill command
to disassociate the process from Native Inspect and allow the process to terminate.

cd Command
Changes the current working directory to the specified pathname.
Alias: volume.
cd pathname

Where:
pathname

The OSS or Guardian absolute or relative pathname of the new current working directory.

Example
• To specify that the current working directory (Guardian environment) is mysubvol on the

$DATA5 disk volume:
(eInspect 1,325):cd $data5.mysubvol

• To specify that the current working directory (OSS environment) is /usr/mysrc:
(eInspect 1,1032):cd /usr/mysrc

commands Command
Sets the commands to be executed when a breakpoint or catch is hit. Enter the commands starting
on the next line.
commands [breakpoint-number]

Where:
breakpoint-number

The number of the breakpoint, catch event, or MAB for which the specified expression is to be
evaluated.

Example
To define breakpoint actions:
(eInspect 1,329): commands 1
Type commands for when breakpoint 1 is hit, one per line.
End with a line saying just "end".
>print PCB
>end

70 Native Inspect Command Syntax

comment (#) Command
A Tcl command that introduces a line of comment.
Alias: # command. (See # (comment) Command (page 64)).
{comment|#} [text]

Either comment or # must be the first non-blank character in the line. The entire line is then treated
as a comment.

condition Command
Specifies a conditional expression to be evaluated when a breakpoint is hit. The breakpoint is
reported only if the condition evaluates to TRUE.
condition breakpoint-number [conditional-expression]

Where:
breakpoint-number,

The number of the breakpoint or catch event, for which the specified expression is to be
evaluated. You canconditionalize MABs in the same manner as breakpoints by using the MAB's
ordinal as an argument.

conditional-expression,
The conditional expression that you want evaluated when Native Inspect encounters the specified
breakpoint. If you omit the conditional-expression, any existing condition is cleared,
and the specified breakpoint is treated as an unconditional breakpoint.
The conditional expression here is different from the low-level conditional expression supported
by the mab and break commands. Low-level conditional expressions (llce) are evaluated
by interrupt processes in the NonStop operating system. High-level conditional expressions
(HLCEs), such as those supported by the condition command, are evaluated by Native
Inspect.

continue Command
Continues execution of the current process. Native Inspect suspends command prompting until the
next debugging event occurs, or until you press the Break key.
continue [ignore-count]

Where:
ignore-count

Specifies the number of times to ignore a breakpoint at the current location.

Example
To continue execution:
(eInspect 1,329):c
Continuing.
Breakpoint 2, pcbDataStructs_initialize ()
 at \SIERRA.$YOSE1.SYMBAT1.SCXXTST:386
 386 pcb = PCBList.entry[2]->ref.pcb;

define Command
The define command defines a command, commandname, specified by the user. If there is
already a command by that name, you are asked to confirm that you want to redefine it.
The definition of the command is made up of other Native Inspect command lines, which are given
following the define command. The end of these commands is marked by a line containing end.
define commandname

comment (#) Command 71

Where:
commandname

The name of the command to be defined. If a command by that name already exists, you are
asked to confirm if you want to redefine that command.

Usage Note
A user-defined command is a sequence of commands to which you assign a new name as a
command. This is done with the define command. User commands can accept up to 10 arguments
separated by whitespace. You access arguments within the user-defined command by specifying
$arg0 ... $arg9.

Example
• This defines the command adder, which prints the sum of its three arguments. The arguments

are text substitutions, so they may reference variables, use complex expressions, or even
perform further functions calls.
define adder
 print $arg0 + $arg1 + $arg2
end

To execute the command adder, use:
adder 1 2 3

• This is an example of defining the user-defined command xyz. This gives you a new command
to print the value of the variable xyz in hex (/x).
(eInspect 0,144):define xyz
Type commands for definition of "xyz".
End with a line saying just "end".
>p /x xyz
>end

dn Command
A Debug-compatible Tcl command that displays memory in the format you specify.
dn native-address [count] [:format]

Where:
native-address

The address at which you want to display memory. The d command accepts only 32-bit and
64-bit addresses. See Syntax of native-address (page 61).

count

The number of items to display. The default value is one.
:format

The format in which to display memory. Options are:
• a for ASCII

• I for ICODE (instruction code)

• o [n] for octal.

• d [n] for decimal.

• h [n] for hexadecimal.
Where [n] is the bit size, expressed as 8, 16, 32, or 64. The default value is 32.
If you omit the format option, 32-bit quantities are displayed in the default output base.

72 Native Inspect Command Syntax

Example
To display memory using the Debug-compatible a and d commands:
(eInspect 3,663): d 0x8005884 10
0x8005884: 0x6d6f6e69 0x746f7200 0x00000000 0x00000000
0x8005894: 0x00000000 0x00000000 0x00000000 0x00000000
0x80058a4: 0x00000000 0x00000000

(eInspect 3,663): a 0x8005884 10
0x8005884: .moni. .tor..
0x8005894:
0x80058a4:

delete Command
Deletes code breakpoints.
If you not specify any breakpoint numbers, Native Inspect prompts you for confirmation before
deleting all the breakpoints associated with the current process.
delete [breakpoints][breakpoint-number...]

Where:
breakpoint-number

The number of the breakpoint or catch event that you want deleted. You can delete only
breakpoints that are associated with the current process or global breakpoints. Deleted
breakpoint numbers are not reassigned.
To determine a breakpoint number, use the info Command with the breakpoints option.

delete display Command
Deletes an expression from the list of expressions that are automatically displayed when the program
is suspended.
If you do not specify a value for number, the command deletes all automatic display expressions.
delete display [number]

Where:
number

An ordinal number that identifies one expression on the automatic display list.

Consideration
• To specify an expression for automatic display, use the display command. (See display

Command (page 76).)
• To display the expressions on the automatic display list do the following:

Use the info command with the display option. (See info Command (page 86).)◦
◦ Use the display command with no arguments.

detach Command
Disassociates Native Inspect from the current process or from a specified process. Removes the
current process from the set of processes being debugged and allows the process to continue
executing.
If only one process is being debugged by Native Inspect, there is no current process after you
enter the detach command.
If you do not enter a pin or process name, this command detaches Native Inspect from the current
process.

delete Command 73

Related Commands: Detach is the complement of the attach command. (See attach Command
(page 66).)
detach [pin] | [$process-name]

Where:
pin

The process number of a process under the control of Native Inspect from which you want to
detach.

$process-name

The name of the process or process-pair under the control of Native Inspect from which you
want to detach.

Considerations
• Before entering the detach command, you should typically clear all breakpoints in the process

and continue process execution. If breakpoints are set in the process, Native Inspect displays
a confirmation prompt.

• If the process you name in a detach command is suspended, it will automatically be resumed.

• If you enter the detach command when breakpoints are set in the process, Native Inspect
issues a warning describing the situation and gives you the option of continuing or aborting
the operation.

Example
See the section titled: Example of Using Multiple Instances of Native Inspect (page 26)

dir Command
Appends a specified directory to the search path that Native Inspect uses to locate source files.
The directory search path is shared by all programs that are currently being debugged by Native
Inspect.
You typically use the dir command to help Native Inspect find source files when their current
location differs from the location at which they were compiled, but their base file name remains
the same. You use the related map command (see map-source-name (map) Command (page 99))
to specify base file name changes between compilation and debugging.
If you do not specify a directory, the search path is reset to empty (that is, Native Inspect searches
for source files only in the directory from which the source file was compiled).
dir [directory]

Where:
directory

The name of a local NonStop Guardian subvolume ($volume.subvolume) or an OSS
directory (/h/usr/rell/src) that you want to append to the search path for source files.

Related Commands: The list command (see list Command (page 94)), the map command (see
map-source-name (map) Command (page 99)), and the show command with the directories option
(see show Command (page 116)).

Example
In the following example, $cdir represents the compilation directory, and $cwd represents the
current working directory. To set a source subvolume search path and display the current subvolume
search path, use the following commands:
(eInspect 5,855): dir $d0117.test
Source directories searched: $d0117.test:$cdir:$cwd
(eInspect 5,855): dir $d0117.kris

74 Native Inspect Command Syntax

Source directories searched: $d0117.kris:$d0117.test:$cdir:$cwd
(eInspect 5,855): show directories
Source directories searched: $d0117.kris:$d0117.test:$cdir:$cwd

disable Command
Disables specified breakpoints, which remain defined but are not hit until reenabled. Use the
enable command (see enable Command (page 78)) to enable a disabled breakpoint.
If you do not enter any breakpoint numbers, the command disables all the breakpoints associated
with the current process.
Abbreviations dis and disa.
disable [breakpoints] [breakpoint-number...]

Where:
breakpoint-number

The number of a breakpoint or catch event that you want disabled. If you omit
breakpoint-number, all current breakpoints are disabled.

Example
See the example for the enable Command (page 78).

disable display Command
Disables the evaluation and display of a previously defined automatic display expression.
If you do not specify any command arguments, the command disables the entire automatic display
list.
disable display [number]

Where:
number

An ordinal number that identifies an expression to be deleted from the automatic display list.

Considerations
• To specify an expression for automatic display, use the display command (see display

Command (page 76)).
• To display the current expression numbers on the automatic display list, either enter the info

command (see info Command (page 86)) with the display option, or enter the display
command with no arguments.

disassemble (da) Command
Displays a range of memory as instructions. To display the instructions that compose the current
line, first use the info line command to display the line’s address range and then use the
disassemble command.

NOTE: COBOL programs are often lengthy. For this reason, using the disassemble command
with a COBOL program can result in a lengthy display of instructions. HP recommends displaying
the instructions for one line at a time, as described in the preceding paragraph.

If you specify only one of start-address and end-address, Native Inspect disassembles the
entire function surrounding the given address.
If you specify no start-address or end-address, Native Inspect disassembles the entire
function surrounding the current PC value.
Alias: da.

disable Command 75

{da|disassemble} [[start-address][end-address] | function-name]

Where:
start-address

Specifies the starting address of the range of instructions to display.
end-address

Specifies the ending address of the range of instructions to display.
function-name

Specifies a function to display.

NOTE: You can use the x command to display a specified number of instructions starting at
a specified address.

Example
To display instructions for a function:
(eInspect 3,663): da PCB_addAttribute
Dump of assembler code for function PCB_addAttribute:
;;; File: \SIERRA.$YOSE1.SYMBAT1.SCXXTST
 239 {
0x70001820:0 <PCB_addAttribute>: [MII] alloc r34=ar.pfs,30,30,0
0x70001820:1 <PCB_addAttribute+6>: adds r12=-96,r12
0x70001820:2 <PCB_addAttribute+12>: nop.i 0x0;;
0x70001830:0 <PCB_addAttribute+16>: [MMI] adds r27=32,r12
0x70001830:1 <PCB_addAttribute+22>: nop.m 0x0
0x70001830:2 <PCB_addAttribute+28>: nop.i 0x0;;
0x70001840:0 <PCB_addAttribute+32>: [MII] stf.spill [r27]=f2
0x70001840:1 <PCB_addAttribute+38>: mov r35=r32
0x70001840:2 <PCB_addAttribute+44>: mov r36=r33
0x70001850:0 <PCB_addAttribute+48>: [MMI] adds r37=48,r12;;
0x70001850:1 <PCB_addAttribute+54>: st8 [r37]=r35
0x70001850:2 <PCB_addAttribute+60>: nop.i 0x0
0x70001860:0 <PCB_addAttribute+64>: [MMI] adds r38=56,r12;;
0x70001860:1 <PCB_addAttribute+70>: st8 [r38]=r36
0x70001860:2 <PCB_addAttribute+76>: nop.i 0x0
 240 pcb->attribute[pcb->attributeCount++] = pcbAttribute;
0x70001870:0 <PCB_addAttribute+80>: [MMI] adds r39=60,r12;;
0x70001870:1 <PCB_addAttribute+86>: ld4 r40=[r39]
0x70001870:2 <PCB_addAttribute+92>: nop.i 0x0
...

NOTE: The output offsets are specified in hexadecimal.

display Command
Specifies an expression that is to be automatically evaluated and the result displayed each time
the program is suspended.
If you do not specify any arguments, Native Inspect displays the expressions currently on the
automatic display list.
display [[/format] expression]

Where:
/format

An optional count, format, and size specification. See Syntax of /format (page 63).
expression

Evaluates the expression and adds it to the list of expressions to be evaluated. See Syntax of
expression (page 62).

76 Native Inspect Command Syntax

Example
• To use the automatic display list:

(eInspect 4,798): display pcb->attributeCount
1: pcb->attributeCount = 1
(eInspect 4,798): display pcb->pin
2: pcb->pin = 0
(eInspect 4,798): next
 364 PCB_addAttribute(pcb, PCBAttribute_createNonstop(PCBLis
t.entry[10]));
2: pcb->pin = 0
1: pcb->attributeCount = 2
(eInspect 4,798): next
 365 memcpy(gBuffer, pcb, sizeof(PCB_t));
2: pcb->pin = 0
1: pcb->attributeCount = 3
(eInspect 4,798): disable display 1 2
(eInspect 4,798): next
 369 pcb = PCBList.entry[0]->ref.pcb;
(eInspect 4,798): info display
Auto-display expressions now in effect:
Num Enb Expression
2: n pcb->pin
1: n pcb->attributeCount

• To display a COBOL expression:
(eInspect 7,383): display CI
1:CI=142
(eInspect 7,383): next
00142
 103 DISPLAY “Leaving cat”.
1: CI=142
(eInspect 7,383): display CI NOT EQUAL 0
2: CI NOT EQUAL O=’T’

dmab Command
Deletes a memory access breakpoint (MAB), which is set with the mab command (see mab Command
(page 97)).
dmab [-g]

Where:
-g

Deletes the global MAB.

Example
To delete the memory access breakpoint:
(eInspect 1,480): dmab

document Command
Documents the user-defined command, commandname, so that it can be accessed by help. The
command commandname must already be defined. The document command reads lines of
documentation, just as the define command reads the lines of the command definition, ending
with end.
After the document command is finished, running help on command commandname displays
the documentation you have written.
To change the documentation of a command, use the document command again. Redefining the
command with define does not change the documentation.
document commandname

dmab Command 77

Where:
commandname

The name of the command to be defined. If a command by that name already exists, you are
asked to confirm if you want to redefine that command.

Usage Note
A user-defined command is a sequence of commands to which you assign a new name as a
command. This is done with the define Command (page 71). User commands can accept up to
10 arguments separated by whitespace. You access arguments within the user-defined command
by specifying $arg0 ... $arg9.

down (down-silently) Command
Selects the stack frame that is called by the current stack frame. The selected stack frame becomes
the stack frame relative to which program state is displayed. The down command also prints out
information about the selected stack frame.
Related Commands: The up command (see up (up-silently) Command (page 123)).
{down|down-silently} count

Where:
count

The number of frames to traverse before selecting a frame.

Example
See the Example in the section titled: up (up-silently) Command (page 123).

enable Command
Enables breakpoints that you have disabled using the disable command (see disable Command
(page 75)).
If you do not enter any breakpoint numbers, the command enables all the breakpoints associated
with the current process.
enable [once|delete] [breakpoint-number...]

Where:
once

Enables the specified breakpoint and then disables it after it is hit once.
delete

Enables and then deletes the specified breakpoint after it is hit.
breakpoint-number

The number of a disabled breakpoint or catch event that you want to enable.

Example
To disable and then enable a breakpoint:
(eInspect 1,329): disable 1
(eInspect 1,329): info break
Num Type Disp Enb Address What
1 breakpoint keep n 0x70002540 in pcbDataStructs_initialize
 at \SIERRA.$YOSE1.SYMBAT1.SCXXTST:352
 stop only if pcb->pin == 2
 print PCB
(eInspect 1,329): enable 1
(eInspect 1,329): info break
Num Type Disp Enb Address What

78 Native Inspect Command Syntax

1 breakpoint keep y 0x70002540 in pcbDataStructs_initialize
 at \SIERRA.$YOSE1.SYMBAT1.SCXXTST:352
 stop only if pcb->pin == 2
 print PCB

enable display Command
Enables the evaluation and display of a previously disabled display expression.
If you do not specify a number, the command displays all the previously displayed expressions
on the automatic display list.
enable display [number]

Where:
number

An ordinal number that identifies an expression on the automatic display list.

Considerations
• To specify an expression for automatic display, use the display command (see display

Command (page 76)).
• To display the expression numbers on the automatic display list, either use the info command

(see info Command (page 86)) with the display option, or enter the display command
with no arguments.

env Command
Displays information about the environment of the current process, including register values; segment
numbers for data space, code space and user stack; and user segment information.
env

Native Inspect also displays the current input and output base, whether logging is currently on or
off, and the number of lines in a page (show height).
For process debugging, the terminal name and the privileged mode (show priv) are also
displayed.

eq Command
A Debug-compatible Tcl command that evaluates an expression and displays the result in octal,
decimal, hexadecimal, and ASCII.
eq expression

Where:
expression

An expression used in the current process.

exit (quit) Command
An alias for the quit command (see quit (exit) Command (page 108)). This command closes the
current Native Inspect session but leaves the current process running.
If you enter the quit or exit command when breakpoints are set in the process or when the
process is suspended, Native Inspect issues a warning and gives you the option of continuing or
aborting the operation.

fc Command
Redisplays a previous command and allows you to edit and reexecute the command. This command
behaves like the fc command in TACL on a NonStop system.

enable display Command 79

fc [command-number|command-string]

Where:
command-number

The number of the command you want to redisplay, edit, and reexecute. Use the show command
(see show Command (page 116)) with the commands option to display the commands entered
in the current session.

command-string

The first few letters of the command you want to redisplay, edit, and reexecute.
Native Inspect supports the same editing characters that TACL supports:

• d or D for delete (deletes the characters above the d or D)

• i or I for insert (inserts the string that follows the i or I)

• r or R for replace (replaces the characters in the original command with the characters
following the r or R)

See the Guardian User’s Guide for examples of the FC command.

files (ls) Command
Displays files in the current working directory or the directories that match a specified pattern.
If you do not specify a pattern, the files command displays the names of all the files in the current
working directory.
Alias: ls (see ls (files) Command (page 97)).
files [pattern]

Where:
pattern

Any wildcard pattern, such as ?disp*, which matches the files named:ODISP, ODISP2, and
ADISPFILE).

The files command accepts the following wildcard characters:

• * – Matches 0 or more characters

• ? – Matches any one character

finish Command
Executes the current process until execution either returns from the currently selected frame (by
default, the current frame) or encounters a debugging event. The finish command prints the
return value, if there is one. Use the frame command (frame (select-frame) Command (page 82))
to select the current frame.
The finish command operates relative to the currently selected frame, which might differ from
the current execution frame.
After you enter a finish command, you can repeat it by pressing the Enter key at the next Native
Inspect prompt. The effect is the same as if you had entered another finish command. The ability
to repeat continues until you enter any other Native Inspect command.
finish

Related Commands: next (see next (nexti) Command (page 102)), step (see step (stepi) Command
(page 118)).

fn Command
Searches for a specified value (finds a number) in the virtual address space of the current process.
The fn command is Debug-compatible.

80 Native Inspect Command Syntax

fn value [start-addr [end-addr]] [type]

Where:
value

The value you want to find. The fn command does not infer the bit size of value based on
its magnitude.

start-addr

The address where the search is to begin.
end-addr

The address where the search is to end.
type

The bit size of value (8, 16, 32, or 64 bits). The default value is 32 bits. The search increment
is the same as the bit size.

After finding the first instance of the specified value, Native Inspect prompts you to confirm
continuation of the search.

fopen Command
Displays information about files that have been opened by the current program. This command is
applicable to TNS/E native processes as well as snapshot files.
fopen [file-num] [-d]

Where:
file-num

is the number of the file about which you want information. If you do not specify a file number,
Native Inspect displays information about all the files opened by the program. To get information
about the last file system error, specify file_num as -1.

-d
is the flag indicating detailed output is requested. The command output includes information
such as the file system error, error detail, device type, device subtype, and so on.

Considerations
The fopen command does not accept or list COBOL unit descriptors. fopen lists and accepts
Guardian file numbers, and lists all files when no arguments are specified.

Examples
• To display concise information about all the files opened by the program:

 (eInspect 0,56):fopen
FileNum LastErr Name
1 0 \PELICAN.$ZTN2.#PT9WNC3
2 0 \PELICAN.$SYSTEM.#0020780
3 0 \PELICAN.$DATA4.TEST1.CPU0

• To display detailed information about a file:
 (eInspect 0,56):fopen 2 -d
Name \PELICAN.$SYSTEM.#0020780
Filenum 2
 General File Information.
 Device Type 3
 Device Subtype 53
 File Type UNSTRUCTURED (0)
 Object Type 0
 Logical Device Number 6
 Open Access 1
 Open Exclusion 0

fopen Command 81

 Open Nowait Depth 0
 Open Sync Depth 0
 Open Options 0
 Physical Record Length 4096 Bytes
 Outstanding Requests 0
 Error 0
 Error Detail 0
 Disk File Information.
 End of File 0 Bytes
 Current Record Pointer 0
 Next Record Pointer 0
 Modification Timestamp 2008-03-03 15:52:52
 Extent Size 28 Pages, 28 Pages
 File Code 0
 Flags DEMOUNTABLE WRITE-THRU
 Block length 0 Bytes
 Logical Record Length 0 Bytes
 Maximum Extents 0
 Partitions 0

(eInspect 2,1071):fopen 3 -d
Name /home/vi/a
Filenum 3
 OSS File Information.
 Mode 32768
 File Descriptor(s) 0
 Error 0
 Error Detail 0
 OSS Disk File Information.
 UID 65535
 GID 255
 Serial Number 21405
 End of File 8 Bytes
 Device ID 541165879296
 RDev 0
 Access Timestamp 2008-02-21 13:49:37
 Change Timestamp 2008-02-21 13:49:46
 Modification Timestamp 2008-02-21 13:49:46
 Link Count 1

• To display information about last file system error:
 (eInspect 0,1136):fopen -1
FileNum LastErr Name
-1 11

frame (select-frame) Command
Selects a stack frame and prints information about the selected stack frame. The selected stack
frame becomes the frame relative to which program state is displayed.
The select-frame is a silentversion of the frame command, does not print out information about
the selected frame.
[frame|select-frame] [frame-number]

Where:
frame-number

The number of the frame you want to select. To display frame numbers, use the bt command
(see bt (tn) Command (page 69)). The frame at which execution is currently halted is numbered
0, and frame numbers continue consecutively to the base frame from which execution began.
If you do not include any arguments, the frame command displays information about the
current stack frame, which can be useful for determining your current program location.

82 Native Inspect Command Syntax

Considerations
The currently selected frame (specified in the frame command) is distinguished from the current
program location (the frame at which execution is suspended), subject to the following conditions:

• Most Native Inspect commands operate on the currently selected frame.

• Execution-control commands, such as step and next, operate on the current program location.

• For COBOL programs, the CALL stack records the history of active program unit invocations.
By default, Native Inspect shows the program state relative to the most recently invoked
program unit.

• You can use the frame command to view program state relative to some other frame.

NOTE: PERFORM invocations are not listed on the CALL stack.

Examples
• To display the current frame:

(eInspect 6,679): frame
#0 test_complexTypes() () at \SYS04.$D0117.SYMBAT1.SCXXTST:424
424 printf("%s test_complexTypes\n", getStepPrefix(1));

• To display frame number 1:
(eInspect 6,679): frame 1
#1 0x70001570:0 in main (argc=1, argv=0x8003010)
 at \SYS04.$D0117.SYMBAT1.SCXXTST:218
 218 test_complexTypes();

help Command, help Option
Displays information about commands of Native Inspect. The online help for Native Inspect has
been inherited from its WDG/GDB parents and thus provides somewhat different information than
that provided in this manual.

FunctionCommand or Option

Takes several arguments and displays syntax, explanation, and examples according to the
options you specify.

help command

Takes no arguments and displays the syntax of all the command-line options nocstm and
version. (See nocstm Option and version Option).

help command-line
option (--help)

help [command]

Where:
help

entered with no options at the Native Inspect prompt, displays a list of general classes of Native
Inspect commands for which you can display help.

command

The name of a Native Inspect command for which you want to display help.

Examples
• To display help:

(eInspect 3,-2): help
List of classes of commands:

aliases -- Aliases of other commands
breakpoints -- Making program stop at certain points

help Command, help Option 83

data -- Examining data
filecmd -- Specifying and examining files
internals -- Maintenance commands
obscure -- Obscure features
running -- Running the program
stack -- Examining the stack
status -- Status inquiries
support -- Support facilities
tracepoints -- Tracing of program execution without stopping the program
user-defined -- User-defined commands

Type "help" followed by a class name for a list of commands in that class.
Type "help" followed by command name for full documentation.
Type "tcl" followed by command name for Tcl commands (e.g., "tcl help").
Command name abbreviations are allowed if unambiguous.

• To display help for the symbol command:
(eInspect 3,-2): help symbol
Load symbol table from executable file FILE.
The `file' command can also load symbol tables, as well as setting the file to execute.

hold Command
Suspends the current process (if it is executing) so that you can perform debugging operations on
the process.
hold

The hold command issues a PROCESS_DEBUG_ request on the current process. After the current
process is in the Hold state, Native Inspect redisplays its command prompt.

ignore Command
Enables you to specify a number of breakpoint hits to be ignored before Native Inspect reports
the breakpoint has been hit.
ignore breakpoint-number ignore-count

Where:
breakpoint-number

The number of a breakpoint or catch event that you want reported.
ignore-count

The number of breakpoint hits that Native Inspect is to ignore before reporting the breakpoint.

ih Command
Displays information (info handler) about all signal handlers or about the handler for a specified
signal. This command applies only to TNS/E native processes, not snapshot files.
Related Command: mh (see mh Command (page 100)).
ih [signal_name]

Where:
signal-name

The name of the signal about which you want information. If you do not specify a signal name,
Native Inspect displays information about all the signals. Table 12 (page 101) contains a list
of signal names.

The command output includes information such as the address of the signal handler, whether the
signal handler is priv or not, and various flags.

Example
To display information about all the signal handlers:

84 Native Inspect Command Syntax

(eInspect 3,1179): ih
Signal Priv/Non Handler Mask Flags
 SIGHUP N 0xfffc0000 0x0 0x0
 SIGINT N 0xfffc0000 0x0 0x0
 SIGQUIT N 0xfffc0000 0x0 0x0
 SIGILL N 0xfffc0000 0x0 0x0
 SIGURG N 0xfffc0001 0x0 0x0
 SIGABRT N 0xfffc0000 0x0 0x0
 SIGIO N 0xfffc0001 0x0 0x0
 SIGFPE N 0xfffc0000 0x0 0x0
 SIGKILL N 0xfffc0000 0x0 0x0
 SIGSEGV N 0xfffc0000 0x0 0x0
 SIGWINCH N 0xfffc0001 0x0 0x0
 SIGPIPE N 0xfffc0000 0x0 0x0
 SIGALRM N 0xfffc0000 0x0 0x0
 SIGTERM N 0xfffc0000 0x0 0x0
 SIGUSR1 N 0xfffc0000 0x0 0x0
 SIGUSR2 N 0xfffc0000 0x0 0x0
 SIGCHLD N 0xfffc0001 0x0 0x0
 SIGRECV N 0xfffc0001 0x0 0x0
 SIGSTOP N 0xfffc0000 0x0 0x0
 SIGTSTP N 0xfffc0000 0x0 0x0
 SIGMEMERR N 0xfffc0000 0x0 0x0
 SIGNOMEM N 0xfffc0000 0x0 0x0
 SIGMEMMGR N 0xfffc0000 0x0 0x0
 SIGSTK N 0xfffc0000 0x0 0x0
 SIGTIMEOUT N 0xfffc0000 0x0 0x0
 SIGLIMIT N 0xfffc0000 0x0 0x0
 SIGCONT N 0xfffc0001 0x0 0x0
 SIGTTIN N 0xfffc0000 0x0 0x0
 SIGTTOU N 0xfffc0000 0x0 0x0
 SIGABND N 0xfffc0000 0x0 0x0

in Command
Displays instructions at the specified location. The I command is Debug-compatible.
i {{native-address [count]} | function-name}

Where:
native-address

The address at which you want to display instructions. See Syntax of native-address (page 61).
count

The number of instruction bundles to display (the three instructions that can be executed in a
single CPU cycle. The default value is 1.

function-name

The name of the function in the source whose instructions you want to display.
Alternate methods of displaying instructions are:
• Using the x command in the form: x/i $pc. (See x Command (page 125).)

• Using the display command in the form: display/i $pc. (See display Command
(page 76).)

Example
To display instructions:
(eInspect 1,700): i 0x70001c80 5
eInspect 1,700):i 0x70001c80 5
Dump of assembler code from 0x70001c80:0 to 0x70001cd0:0:
;;; File: \PELICAN.$DATA3.SUBVOL.GARTESTC
 118 {

in Command 85

0x70001c80:0 <call9>: [MMI] alloc r34=ar.pfs,19,16,0
0x70001c80:1 <call9+0x6>: adds r12=-128,r12
0x70001c80:2 <call9+0xc>: mov r36=r1;;
0x70001c90:0 <call9+0x10>: [MII] nop.m 0x0
0x70001c90:1 <call9+0x16>: mov r35=b0
0x70001c90:2 <call9+0x1c>: mov r37=r32
0x70001ca0:0 <call9+0x20>: [MMB] mov r38=r33
0x70001ca0:1 <call9+0x26>: adds r39=80,r12
0x70001ca0:2 <call9+0x2c>: nop.b 0x0;;
0x70001cb0:0 <call9+0x30>: [MII] st8 [r39]=r37
0x70001cb0:1 <call9+0x36>: adds r40=88,r12
0x70001cb0:2 <call9+0x3c>: nop.i 0x0;;
0x70001cc0:0 <call9+0x40>: [MII] st8 [r40]=r38
 120 printf("%s q = %d\n",string,q);
0x70001cc0:1 call9+0x46>: addl r41=96,r1
0x70001cc0:2 call9+0x4c>: nop.i 0x0;;
End of assembler dump.

info Command
Displays information about the target being debugged. No aliases are accepted for the info
command.
info attribute

Where:
attribute

The value of attribute is one of the following:
address symbolic-name

Describes where the specified symbol is stored.
all-registers

Lists all registers and their contents for the currently selected frame. Listing includes
floating-point registers.

architecture

Lists information about the target architecture.
args

Lists argument variables of the currently selected stack frame.
breakpoints

Lists information about all user-defined breakpoints, including per-process breakpoints,
global breakpoints, catch events and MABs.

copying

Lists the conditions for redistributing copies of Native Inspect.
display

Lists the expressions on the automatic display list, which are displayed when the program
being debugged stops.

dll

Prints information about each loadfile (program file and DLL) associated with the current
process. The listing includes the loadfile name, its preferred load address, and its actual
address.

files

Prints names of targets and files being debugged.

86 Native Inspect Command Syntax

frame frame-number

Prints information about the current or the specified stack frame. To display frame numbers,
use the bt command. The frame at which execution is currently halted is numbered 0, and
frame numbers continue consecutively to the base frame, from which execution began.

functions regular-expression

Prints all function names or those matching the specified regular expression.
handle signal-number

Displays the response that Native Inspect gives when the current program receives various
signals.

line

Displays the starting and ending addresses of the code corresponding to the specified
source line. See Syntax of locspec (page 59).

locals

Prints the values of local variables of the currently selected stack frame. For COBOL
programs, this option prints all variables within the scope of the program unit, including
variables declared with the GLOBAL attribute.

process

Prints information about the process being debugged, which includes displaying the object
file and any DLLs in use, along with their timestamps.

program

Prints execution status of the program being debugged.
registers

Lists all integer registers and their contents.
scope locspec

Displays information about the local variables and argument variables for the specified
scope. See Syntax of locspec (page 59).

sessions

Prints information about all processes being debugged by the current Native Inspect process.
set

Shows all settings of Native Inspect; this is equivalent to the show command.
signals signal-number

Displays the response that Native Inspect gives when the current program receives the
specified signal.

source

Prints information about the current source file.
stack

Prints a backtrace of the stack. See also the bt command (bt (tn) Command (page 69)).
symbol

Describes what symbol is at the specified address. See the section titled Syntax of
native-address (page 61).

symbol-files

Prints the names of all the symbol files visible to the current process, including both
per-process and global symbol files.

target

Prints information about the target being debugged.

info Command 87

types regular-expression

Prints all type names, or those matching the specified expression.
variables regular-expression

Prints all global and static variable names, or those matching the specified expression.
warranty

Prints the various types of warranty that Native Inspect users do not have.

Examples
• To display frame information:

(eInspect 2,676): info frame
Stack level 0, frame at 0x6ffffe50:
 ip = 0x70002300:0 in pcbDataStructs_initialize
 (\SIERRA.$YOSE1.SYMBAT1.SCXXTST:340); saved ip 0x700037d0:0
 called by frame at 0x6ffffe80
 source language c.
 Arglist at 0x6ffffe50, args:
 Locals at 0x6ffffe50, Previous frame's sp is 0x6ffffe50
 Saved registers:
 gr32 at 0x6e0000c0, gr33 at 0x6e0000c8, gr34 at 0x6e0000d0,
 gr35 at 0x6e0000d8, gr36 at 0x6e0000e0, gr37 at 0x6e0000e8,
 gr38 at 0x6e0000f0

• To display the values of all local variables:
(eInspect 3,663): info locals
pcb = (PCB_t *) 0x80048a0
pcbHandle = (PCBHandle_t *) 0x8004ed0

• To display information about current breakpoints:
(eInspect 1,325): info break
Num Type Disp Enb Address What
1 breakpoint keep y 0x70001672 in main
 at \SIERRA.$YOSE1.SYMBAT1.SCXXTST:216
2 breakpoint keep y 0x70003700 in test_complexTypes
 at \SIERRA.$YOSE1.SYMBAT1.SCXXTST:420

(eInspect 1,325): info break
Num Type Disp Enb Glb Address What
2 breakpoint keep y n 0x70003be0 at PARA1 in MAIN-PROGRAM
 at \SIERRA.$DIVA.CBEX.CBEXAM1:75
3 breakpoint keep y n 0x70004440 at PARA2 OF SECTION2 in MAIN-PROGRAM
 at \SIERRA.$DIVA.CBEX.CBEXAM1:97
4 breakpoint keep y n 0x70004a20 at PARA2 OF SECTION3 in MAIN-PROGRAM
 at \SIERRA.$DIVA.CBEX.CBEXAM1:109

The following table defines the column headers in the info break command:

The number of the breakpoint, starting with 1Num

The type of breakpointType

Disposition, either keep, del(ete), or dis(able)Disp

Enabled, either y or n (yes or no)Enb

Global, either y or n (yes or no)Glb

The address of the breakpointAddress

The file or module that contains the breakpoint. For COBOL programs, Paragraph/Section
information is also displayed if the breakpoint is placed on the paragraph or section.

What

• To display the address range of a line:

88 Native Inspect Command Syntax

(eInspect 3,663): info line
Line 341 of "\SIERRA.$YOSE1.SYMBAT1.SCXXTST"
 starts at address 0x70002320:0 <pcbDataStructs_initialize>
 and ends at 0x700023c0:0 <pcbDataStructs_initialize+160>.

• To display registers for a frame:
(eInspect 3,663): info frame 1
Stack frame at 0x6ffffe80:
 ip = 0x70003870:0 in test_complexTypes (\SIERRA.$YOSE1.SYMBAT1.SCXXTST:425);
 saved ip 0x700016b0:0
 called by frame at 0x6ffffef0, caller of frame at 0x6ffffe50
 source language c.
 Arglist at 0x6ffffe80, args:
 Locals at 0x6ffffe80, Previous frame's sp is 0x6ffffe80
 Saved registers:
 gr32 at 0x6e000068, gr33 at 0x6e000070, gr34 at 0x6e000078,
 gr35 at 0x6e000080, gr36 at 0x6e000088, gr37 at 0x6e000090,
 gr38 at 0x6e000098, gr39 at 0x6e0000a0, gr40 at 0x6e0000a8,
 gr41 at 0x6e0000b0, gr42 at 0x6e0000b8

• To list information about currently loaded DLLs, including the program loadfile:
(eInspect 3,331): info dll
Loadfiles:
\PELICAN.$DATA3.COBBAT.XCS000D0: (symbol file:\PELICAN.$DATA3.COBBAT.XCS000D0) (
PIC ELF PROG)
 Text : 0x0000000070000000 (size: 0x25000)
 Data : 0x0000000008000000
 UID : 21576679|146
\PELICAN.$SYSTEM.SYS00.ZCOBDLL:(PIC ELF DLL, Public LIB)
 Text : 0xfffffffffeb10000 (size: 0xc8000)
 Data : 0x000000006db50000
 UID : 12085384|6
\PELICAN.$SYSTEM.SYS00.ZCREDLL:(PIC ELF DLL, Public LIB)
 Text : 0xffffffffff630000 (size: 0x7b000)
 Data : 0x000000006dd60000
 UID : 12085951|6
\PELICAN.$SYSTEM.SYS00.MCPDLL:(PIC ELF DLL, Implicit LIB, May NOT set BPTs)
 Text : 0xffffffffe1000000 (size: 0x118000)
 Constant Data : 0xffffffffe1400000
 Gateway : 0xffffffffe1500000
 UID : 12043755|6
\PELICAN.$SYSTEM.SYS00.INITDLL:(PIC ELF DLL, Implicit LIB, May NOT set BPTs)
 Text : 0xffffffffe4000000 (size: 0x167c000)
 Constant Data : 0xffffffffe8000000
 Gateway : 0xffffffffe8100000
---Type <return> to continue, or q <return> to quit---
 UID : 12031597|6

• To display the contents of the registers (output is several screens long):
(eInspect 2,647): info reg
 pr0: 0x1
 pr1: 0x0
 pr2: 0x0
 pr3: 0x0
 pr4: 0x0
 pr5: 0x0
 pr6: 0x0
 pr7: 0x0
 pr8: 0x1
 pr9: 0x0
 pr10: 0x0
 pr11: 0x0
 pr12: 0x1
 pr13: 0x0
 pr14: 0x1
...
 gr31: 0x400000000000038c
 br0: 0x0

info Command 89

 br1: 0x0
 br2: 0x0
 br3: 0x0
 br4: 0x0
 br5: 0x0
 br6: 0xffffffffe18a3840
 br7: 0xffffffffe1555440
 ip: 0xffffffffe2207040
 cfm: 0x0
 ra: 0x0
 sp: 0x6fffff50
 psp: 0x6fffff50
 bsp: 0x6e000000
 lc: 0x0
 ec: 0x0

info Command (memory leak detection)
Displays commands to debug memory problems.
info attribute value

Where:
attribute value

Where attribute value is one of the following:
corruption

Checks for corruption in the currently allocated heap blocks. In addition, it lists the potential
in-block corruptions in all the freed blocks.

heap

Displays a heap report, listing information such as the start of heap, end of heap, heap
size, heap allocations, size of blocks, and number of instances. The report shows heap
usage at the point you use the info heap command. The report does not show allocations
that have already been freed. For example, if you make several allocations, free them all,
and then use info heap, the result does not show any allocations.

heap filename

Writes heap report output to the specified file.
heap idnumber

Produces detailed information on the specified heap allocation including the allocation call
stack.

heap-interval filename

Creates the report of heap growth. The data for each interval has the start and end time
of the interval. If filename is mentioned, a detailed report is written in the file.

leaks

Displays a leak report, listing information such as the leaks, size of blocks, and number of
instances.

leaks filename

Writes the complete leak report output to the specified file.
leaks leaknumber

Produces detailed information on the specified leak including the allocation call stack.

NOTE: The memory debugging feature is not available when the application is stopped in a
dynamic-link library (DLL).

90 Native Inspect Command Syntax

Examples
• To obtain a heap profile, perform the following steps:

1. Run the debugger, load the program, and issue the set heap-check on command:
For 32-bit application:
TACL> rund minheap /lib $system.sys00.zrtcdll/ executable arguments
(eInspect 0,248)set heap-check on

For 64-bit application:
TACL> run —minheap -lib=/G/system/sys00/yrtcdll executable arguments
(eInspect 0,248)set heap-check on

See set heap-check Command (memory leak detection) (page 115) for a description of the
set heap-check on command.

2. Set a breakpoint by entering the following command:
(eInspect 0,248)b probepoint

where probepoint is some interesting point in the application being debugged.

3. Run the program by entering the following command:
(eInspect 0,248)run

4. When the program is stopped at a breakpoint, enter the following info heap command:
(eInspect 0,248)info heap

The following output is displayed:
Analyzing heap ...done

Actual Heap Usage:
Heap Start =0x40408000
Heap End =0x4041a900
Heap Size =76288 bytes

Outstanding Allocations:
41558 bytes allocated in 28 blocks

No. Total bytes Blocks Address Function
0 34567 1 0x40411000 myfunc()
1 4096 1 0x7bd63000 bar()
2 1234 1 0x40419710 baz()
3 245 8 0x404108b0 boo()
[...]

info Command (memory leak detection) 91

5. To view a specific allocation, specify the allocation number as an argument to the info
heap command. For example:
(eInspect 0,248)info heap 1
4096 bytes at 0x7bd63000 (9.86%of all bytes allocated)
in bar ()at test.c:108
in main ()at test.c:17
in _start ()
in $START$()

When multiple blocks are allocated from the same call stack, Native Inspect displays
additional information similar to the following:
(eInspect 0,248)info heap 3
245 bytes in 8 blocks (0.59% of all bytes allocated)
These range in size from 26 to 36 bytes and are allocated
in boo ()
in link_the_list ()at test.c:55
in main ()at test.c:13
in _start ()

You can control the stack frames that are collected for reporting at any allocation point.
For more information on this feature, see the Debugging Dynamic Memory Usage Errors
Using HP WDB white paper located at the HP WDB Documentation webpage: http://
www.hp.com/go/WDB.

• To use the info heap command with the min-heap-size filter setting.

NOTE: min-heap-size is described under the set heap-check Command (memory leak
detection) (page 115).

Sample program:
1 #include stdio.h
2 #include stdlib.h
3 main()
4 {
5 int i, *arr[1000];
6 for (i=0; i < 1000; i++)
7 arr[i] = malloc (49);
8 malloc (30);
9 set_brkpt_here(0)
10 exit(0);
11 12 }

Sample debugging session:
For 32-bit application:
TACL> rund minheap /lib $system.sys00.zrtcdll/
(eInspect 0,248)b set_brkpt_here
(eInspect 0,248)set heap-check min-heap-size 31
(eInspect 0,248)run
(eInspect 0,248)info heap
Analyzing heap …
49000 bytes allocated in 1000 blocks
No. Total bytes Blocks Address Function
0 49000 1000 0x4044eff0 main()

For 64-bit application:
TACL> run –minheap –lib=/G/system/sys00/yrtcdll/
(eInspect 0,248)b set_brkpt_here
(eInspect 0,248)set heap-check min-heap-size 31
(eInspect 0,248)run
(eInspect 0,248)info heap
Analyzing heap …
49000 bytes allocated in 1000 blocks

92 Native Inspect Command Syntax

http://www.hp.com/go/WDB
http://www.hp.com/go/WDB

No. Total bytes Blocks Address Function
0 49000 1000 0x4044eff0 main()

• To view the leak profile, perform the following steps:
1. Run the debugger, load the program, and issue the set heap-check leaks on

command:
For 32-bit application:
TACL> rund minheap /lib $system.sys00.zrtcdll/ executable arguments
(eInspect 0,248)set heap-check leaks on

For 64-bit application:
TACL> run –minheap –lib=/G/system/sys00/yrtcdll executable arguments
(eInspect 0,248)set heap-check leaks on

See set heap-check Command (memory leak detection) (page 115) for a description of the
set heap-check leaks on command.

2. Set a breakpoint by entering the following command:
(eInspect 0,248)b probepoint

where probepoint is some interesting point in the application being debugged.

3. Run the program by entering the following command:
(eInspect 0,248)run

4. When the program is stopped at a breakpoint, enter the following info leaks command
to display the list of memory leaks:
(eInspect 0,248)info leaks

The following output is displayed:
Scanning for memory leaks...done

2439 bytes leaked in 25 blocks

No. Total bytes Blocks Address Function
0 1234 1 0x40419710 myfunc()
1 333 1 0x40410bf8 main()
2 245 8 0x40410838 strdup()
[...]

5. The debugger assigns a numeric identifier for each leak. To view a stack trace for a
specific leak, specify the leak number from the list of leaks, as follows:
(eInspect 0,248)info leak 2
245 bytes leaked in 8 blocks (10.05% of all bytes leaked)
These range in size from 26 to 36 bytes and are allocated in strdup ()
in link_the_list ()at test.c:55
in main ()at test.c:13
in _start ()

jump Command
Continues execution of the current process at the specified line number or address.
The jump command changes the program counter to the specified location but does not change
the current stack frame or registers.

CAUTION: Use the jump command with care. It can result in program failure if the target location
depends on a state (such as registers) that has not been established.

jump locspec

Where:
locspec

The location where you want execution to stop. See Syntax of locspec (page 59).

jump Command 93

To suspend execution at the destination location, first enter the break command to plant a temporary
breakpoint.

Example
To jump to a specified location (line 51):
(eInspect 3,638): list
 44 }
 45
 46 void call1(char *string,long long q)
 47 {
 48 eight_byte_struct structure;
 49 structure.a = "from call1";
 50 structure.b = 1;
 51 printf("%s q = %d\n",string,q);
 52 print_and_break();
 53 call2(structure);
(eInspect 3,638): fr 0
#0 call1 (string=0x0, q=0) at C:\cygwin\home\save\test\gartest.c:49
 49 structure.a = "from call1";
(eInspect 3,638): b 52
Breakpoint 3 at 0x700012c0:2: file C:\cygwin\home\save\test\gartest.c, line 52.
(eInspect 6,157): c
Continuing.
From main q = 0

Breakpoint 3, call1 (string=0x70000bd0 "From main", q=0)
 at C:\cygwin\home\save\test\gartest.c:52
 52 print_and_break();

(eInspect 3,638): jump 51
Continuing at 0x700011d0:1.
From main q = 0

Breakpoint 3, call1 (string=0x70000bd0 "From main", q=0)
 at C:\cygwin\home\save\test\gartest.c:52
 52 print_and_break();

kill Command
Terminates the current process or snapshot file.
kill

For processes:

• If Native Inspect is debugging only one process (and if you did not explicitly start Native
Inspect from the TACL command prompt), Native Inspect terminates.

• If Native Inspect is debugging multiple processes, the current process is terminated but Native
Inspect remains running with no current process selected (use the vector command or the
attach command to establish the current process).

• If the current process is unstoppable, the kill request is queued.
For snapshot files:
If you enter a kill command when examining a snapshot file, the current file is closed, but Native
Inspect remains running.

list Command
Lists source code starting at the most recently listed location. Native Inspect reads source from EDIT
files (file code 101) and unstructured files (file code 180).
By default, Native Inspect displays 10 lines, with the current execution location in the middle of
the display, where possible. The current line is indicated by an asterisk (*) at the beginning of the
line. You can use the set Command (environment) with the listsize option to change the list

94 Native Inspect Command Syntax

size to a value other than 10. The show Command with the listsize option shows the current
value of the list size.
For information specific to COBOL programs, see Displaying Source Lines (page 47).
list [start-locspec][,end-locspec] [+|-]

Where:
start-locspec

The location at which the source code display is to begin. If you omit start-locspec, Native
Inspect lists source lines relative to the current program location or the last listed source location.
See Syntax of locspec (page 59).

end-locspec

The location at which the source code display is to end. If you omit end-locspec, Native
Inspect lists 10 lines by default. See Syntax of locspec (page 59).

+

Directs Native Inspect to list the next n lines after the last line listed. The variable nis the value
of the listsize option. The default is 10 lines.

-

Directs Native Inspect to list n lines preceding the last line listed. The variable nis the value of
the listsize option. The default is 10 lines.

The list command warns you if it detects that the timestamp for a source file differs from the timestamp
stored during compilation. For example:
(eInspect):
Warning: Timestamp mismatch for \SIERRA.$OS.SHENDEV.AC
Source modification time at present: 2007-04-04 11:05:09
Source modification time at compilation: 2007-04-04 11:04:07

Locating Source Files
If the list command cannot locate the source file you want, an error message is displayed that
contains the compile-time location recorded in the object file:

• If the base file name is unchanged (the name of the current file is the same as the compile-time
name), use the dir Command to specify the subvolume that contains the file.

• Otherwise, use the map-source-name (map) Command to map the compile-time file name to
the current name. You can copy and paste the path name displayed in the error message as
the left-hand argument to the map command.

For examples of locating source files, see Optionally Determining the Compilation-Time Source
File Name (page 36) and Optionally Configuring a Search Path for Your Source Files (page 36).
For additional details regarding COBOL programs, see Chapter 3: Using Native Inspect With
COBOL Programs.

Repeating the list Command
After you enter a list command, you can repeat it by pressing the Enter key at the next Native
Inspect prompt. The effect is the same as if you had entered another list command with no
parameters: listing continues with the line following the most recently listed line. This ability to
repeat continues until you enter another Native Inspect command.

Examples
• Use the following command to list a source:

(eInspect 1,463): list
 377 */
 378 printf("%s building PCBReadyList: 0, 2, 4\n", getStepPrefix(2));
 379 PCBList_add(&PCBReadyList, PCBList.entry[0]);
 380 pcb = PCBList.entry[0]->ref.pcb;

list Command 95

 381 pcb->state = PCBState_ready;
 382 pcb->flags.item.isReady = 1;
 383 pcb->flags.item.isHappy = 1;
 384
 385 PCBList_add(&PCBReadyList, PCBList.entry[2]);
 386 pcb = PCBList.entry[2]->ref.pcb;
(eInspect 1,463): list
 387 pcb->state = PCBState_ready;
 388 pcb->flags.item.isReady = 1;
 389 pcb->flags.item.isHappy = 1;
 390
 391 PCBList_add(&PCBReadyList, PCBList.entry[4]);
 392 pcb = PCBList.entry[4]->ref.pcb;
 393 pcb->state = PCBState_ready;
 394 pcb->flags.item.isReady = 1;
 395 pcb->flags.item.isHappy = 1;
 396

• Use the following command to list source at a line:
(eInspect 1,463): list 200
 195 static PCBAttribute_t *PCBAttribute_createNonstop();
 196 static PCBAttribute_t *PCBAttribute_createSystem();
 197 static PCBHandle_t *PCBHandle_create(PCB_t *pcb);
 198 static PCBHandle_t *PCBHandle_addRef(PCBHandle_t);
 199 static void PCBList_add(PCBLink_t **list, PCBHandle_t);
 200
 201 static void pcbDataStructs_initialize();
 202
 203 static void test_complexTypes();
 204

• Use the following command to list source at a function:
eInspect 1,463): list pcbDataStructs_initialize
 335
 336 /* **************************
 337 * pcbDataStructs_initialize
 338 */
 339 static void pcbDataStructs_initialize()
 340 {
 341 PCB_t *pcb;
 342 PCBHandle_t *pcbHandle;
 343
 344 printf("%s pcbDataStructs_initialize\n", getStepPrefix(
1));

• Use the following command to list source at an address:
(eInspect 3,663): list *0x700001aa0
0x70001aa0:0 is in PCBAttribute_create (\SIERRA.$YOSE1.SYMBAT1.SCXXTST:252).
 247 */
 248 static PCBAttribute_t *PCBAttribute_create()
 249 {
 250 PCBAttribute_t *pcbAttribute = (PCBAttribute_t *) malloc(
 sizeof(PCBAttribute_t));
 251 memset(pcbAttribute, 0, sizeof(pcbAttribute));
 252 return pcbAttribute;
 253
 254
 255
 256 /*

• COBOL example:
(eInspect 7,411): list MAIN
 19 ?MAIN main
 20 IDENTIFICATION DIVISION.
 21 PROGRAM-ID. main.
 22 ENVIRONMENT DIVISION.
 23 CONFIGURATION SECTION.
 24 SOURCE-COMPUTER. ABD.
 25 OBJECT-COMPUTER. ABD.

96 Native Inspect Command Syntax

log Command
Turns logging on or off:

• If you specify a pathname, logging is turned on.

• If you omit the pathname, Native Inspect turns off logging and closes the current log file.
log [pathname|-d]

Where:
pathname

The OSS pathname or Guardian file name of the log file.
Native Inspect creates a text file (file code 101) in the current working directory or in the
location you specify in the log command. If the log file already exists, Native Inspect opens it
and appends output to it.

-d

Displays the name of the log file that is currently open.
When logging is on, Native Inspect records all commands and their results in the log file.

ls (files) Command
The ls comand is an alias for the files command. See files (ls) Command (page 80).

mab Command
Sets a memory access breakpoint (MAB) for the current process. For each process being debugged
you can set one MAB. The MAB is not assigned a breakpoint number.
When you define a MAB, you can use a low-level conditional expression, but not a high-level
condition or commands to execute. The process is suspended each time the memory location is
accessed in the specified manner (read, write, or change).
The mab command assigns an ordinal to each MAB that you set. This ordinal is displayed at the
time you issue the mab command. You can specify this ordinal as a breakpoint identifier when
using the any of the following commands to manipulate breakpoints and watchpoints:
• enable

• disable

• delete

• condition

• commands

• ignore

Entered with no arguments, the mab command lists information about the current memory access
breakpoint.
Related Command: Use the dmab command (dmab Command) command to delete a memory
access breakpoint.
mab [{*native address|variable} [size][flags] [-e locspec]]

Where:
*native address

A 32-bit or 64-bit address. See Syntax of native-address (page 61).
variable

The name of a variable in the current process on which you want to set a memory access
breakpoint. If you specify a variable, then size is optional.

log Command 97

size

An optional number of bytes if you specify a variable. By default, Native Inspect uses the size
of the variable as the address range to watch.
If you specify *native-address, you must also specify size.
The range over which a MAB is set (that is, the combined value of native-address and
size) cannot exceed a 16K-page boundary.

flags

Specifies one of the following flags:
-c

Specifies change access, which triggers a breakpoint when the value changes.
-g

Specifies a global MAB; can be set only when privileged debugging is enabled. (See
Global Debugging (page 26).) You can specify both the -g and -h flags.

-h

Indicates a halt loop breakpoint, which can only be set by the super ID user after issuing
the priv Command. Both the -g and -h flags can be set at once by the super ID user.

-r

Specifies read access
-w

Specifies write access
-rw

Specifies read/write access (this is the default value)
locspec

A low-level conditional expression that can be specified in any order with flags. See Syntax
of locspec (page 59).

Examples
• To set a MAB at the current location:

(eInspect 1,480): mab myfunc 4
MAB 7 at 0x8000290

• To display the MAB:
(eInspect 1,480): mab
 number=7
 addr = 0x080000e0
 segid = 65535
 mabtype = 2
 global = 0
 haltloop = 0
 length = 1
There is no global MAB set

• To set a MAB by address:
(eInspect 3,880): mab *0x8000370
(eInspect 3,880): c
Continuing.
Process (3, 880) received DS_EVENT_MAB (seg:65535, addr:0x08000370, pc:0xa4bd4c1
1ea887459, len:-233208559 type:1)
0x700024e0:2 in pcbDataStructs_initialize ()
 at \SIERRA.$YOSE1.SYMBAT1.SCXXTST:350
 350 for (PCBList.count=0 ; PCBList.count < PCBLIST_MAX; PCBList.count++)

98 Native Inspect Command Syntax

• To set a MAB on 4 bytes at a given address:
(eInspect 1,480): mab *0x00000070 4

• To set a MAB on variable j when it changes:
(eInspect 1,480): mab j -c

• To set a “change” MAB:
(eInspect 1,480): mab PCBList.count -c

map-source-name (map) Command
Defines filename mapping rules between source file names at compilation time and at debug time.
Related Commands: Use the dir Command to append a directory (subvolume) to the search path
used to locate source files. Use the unmap-source-name (unmap) Command to delete an existing
mapping rule.
map-source-name|map [[source-name] = alias-name] | [source-prefix =
alias-prefix]

Where:
source-name

The fully qualified name of the source file at compilation time. If source-name is omitted, the
fully qualified name of the current source file is used. For Guardian source files, if the node
name is omitted in source-name, the default node name is used. For example,
map $dev11.src5.hello=$test11.src5.hello

alias-name

This is either a fully qualified file name or an unqualified file name to which you are mapping
the fully qualified source-name. If alias-name is unqualified, Native Inspect locates it using the
subvolume search path defined by the dir Command.

source-prefix

A prefix (of any length) of the fully qualified name of the source file at compilation time. For
Guardian source files, if the node name is omitted in source-prefix, the default node name
is used.

alias-prefix

A prefix that will be substituted for source-prefix in source file names. For example, the
following command maps D:\nsk\T1000\src\cpu\mips\x.c to /h/usr/rell/src/
cpu/mips/x.c:
map D:\nsk\T1000=/h/usr/rell

All source name mappings are assigned unique mapping entry numbers. A new mapping is
assigned a higher mapping entry number and takes precedence over previous mappings.
The map command is useful when a file name has changed in some way, whereas the dir command
is useful when a file’s directory location has changed. When you transfer files compiled on a PC
or workstation to the NonStop system, the file names are often not identical.
You can use the dir Command and the map command in combination:

• Use the dir command to define the directory (subvolume).

• Use the map command to change the base file name.
A map-source-name with no parameters lists the existing source name mappings along with their
associated mapping numbers.

map-source-name (map) Command 99

Considerations
• A time-saving use of the map = alias-name form of the map command (source name

omitted) is to specify this command after receiving an error from a list command. The current
source file name is assumed, thus eliminating the need to copy-and-paste or retype the name
displayed in the list command error message.

• New aliases created as a result of prefix matches are added to the mapping list. For example,
if you enter the following command:
map D:\usr\T1000=/h/src

then a source file name of, for example, D:\usr\T1000\src\cpu\mips\x.c is aliased
to /h/src/src/cpu/mips/x.c. when the source file name is listed. A subsequent map
command displays the following aliases:
2. D:\usr\T1000\src\cpu\mips\x.c is aliased to /h/src/src/cpu/mips/x.c (Prefix match)
1. D:\usr\T1000 is aliased to /h/src

If you now enter the following command:
mapD:\usr\T1000=/v/src

then the alias is added to the beginning of the alias list (with alias id 3). If you then list the
source file D:\usr\T1000\src\cpu\mips\x.c, another new full path name alias (which
is now the active alias) is added. A map command now displays the following:
4. D:\usr\T1000\src\cpu\mips\x.c is aliased to /v/src/src/cpu/mips/x.c (Prefix match)
3. D:\usr\T1000 is aliased to /v/src
2. D:\usr\T1000\src\cpu\mips\x.c is aliased to /h/src/src/cpu/mips/x.c (Prefix match)
1. D:\usr\T1000 is aliased to /h/src

• Higher numbered aliases take precedence over lower- numbered aliases

Examples
For more examples of mapping file names, see Optionally Determining the Compilation-Time
Source File Name (page 36) and Optionally Configuring a Search Path for Your Source Files
(page 36).

mh Command
Sets up signal handlers (modifies handlers) for the specified signal.
The mh command applies to the current process only and cannot apply to TNS emulated processes.
The signal handlers can be specified as actions or as a procedure entry address.
mh signal-name {SIG_IGN|SIG_ABORT|SIG_DFL|SIG_DBG|native-address}

Where:
signal-name

The name of the signal being set up with a signal handler. See Table 12 (page 101).
SIG_IGN|SIG_ABORT|SIG_DFL|SIG_DBG

The signal handlers (in this case, actions), defined as follows:
• SIG_IGN – Ignore signal

• SIG_ABORT – Abort program

• SIG_DFL – Invoke default

• SIG_DBG – Invoke debugger
native-address

The procedure entry address at which the signal handler is set up. See Syntax of native-address
(page 61).

Table 12 lists the signal names. Signal names are used in both the mh Command and the ih
Command.

100 Native Inspect Command Syntax

Table 12 TNS/E Signal Names

SIGSTOP1SIGHUP1

SIGTSTP1SIGINT

SIGMEMERRSIGQUIT1

SIGNOMEMSIGILL

SIGMEMMGRSIGURG1

SIGSTKSIGABRT

SIGTIMEOUTSIGIO1

SIGLIMITSIGFPE

SIGCONT1SIGKILL1

SIGTTIN1SIGSEGV

SIGTTOU1SIGWINCH1

SIGABND1SIGPIPE1

SIGTERM1SIGALRM1

SIGUSR21SIGUSR11

SIGRECV1ZSIGCHLD1

1 Indicates signals that apply only in the OSS environment. Other signals apply in both the OSS and native Guardian
environments.

Example
In this example of the mh command and the ih Command, the first mh command causes the signal
to be reported to the debugger; the second mh command restores the default signal handler; and
the ih command displays information about the signal handlers:
(eInspect 4,658): mh SIGNOMEM DIG_DBG
(eInspect 4,658): mh SIGCHLD SIG_DFL
(eInspect 4,658): ih
Signal Priv/Non Handler Mask Flags
 SIGHUP N 0xfffc0000 0x0 0x0
 SIGINT N 0xfffc0000 0x0 0x0
 SIGQUIT N 0xfffc0000 0x0 0x0
 SIGILL N 0xfffc0000 0x0 0x0
 SIGURG N 0xfffc0001 0x0 0x0
 SIGABRT N 0xfffc0000 0x0 0x0
 SIGIO N 0xfffc0001 0x0 0x0
 SIGFPE N 0xfffc0000 0x0 0x0
 SIGKILL N 0xfffc0000 0x0 0x0
 SIGSEGV N 0xfffc0000 0x0 0x0
 SIGWINCH N 0xfffc0001 0x0 0x0
 SIGPIPE N 0xfffc0000 0x0 0x0
 SIGALRM N 0xfffc0000 0x0 0x0
 SIGTERM N 0xfffc0000 0x0 0x0
 SIGUSR1 N 0xfffc0000 0x0 0x0
 SIGUSR2 N 0xfffc0000 0x0 0x0
 SIGCHLD N 0xfffc0000 0x0 0x0
 SIGRECV N 0xfffc0001 0x0 0x0
 SIGSTOP N 0xfffc0000 0x0 0x0
 SIGTSTP N 0xfffc0000 0x0 0x0
 SIGMEMERR N 0xfffc0000 0x0 0x0
 SIGNOMEM N 0xd 0x0 0x0
 SIGMEMMGR N 0xfffc0000 0x0 0x0

mh Command 101

 SIGSTK N 0xfffc0000 0x0 0x0
 SIGTIMEOUT N 0xfffc0000 0x0 0x0
 SIGLIMIT N 0xfffc0000 0x0 0x0
 SIGCONT N 0xfffc0001 0x0 0x0
 SIGTTIN N 0xfffc0000 0x0 0x0
 SIGTTOU N 0xfffc0000 0x0 0x0
 SIGABND N 0xfffc0000 0x0 0x0

modify (mn) Command
A Debug-compatible Tcl command that changes the content of memory at native-address to
value.
modify native-address value {8|16|32|64}

Where:
native-address

The address in memory whose contents you want to change. See Syntax of native-address
(page 61).

value

The value you want to assign to native-address. The options 8, 16, 32, and 64 specify
the bit size of value.

After completion of the command, Native Inspect prints out the address that was modified, the
number of bytes that were modified, and the old and the new values. If the specified value does
not fit in the size specified, an error is returned.

Example
The following command returns an error because the value 0xFFFF is larger than the specified
size of 8 bits:
m 0x4FFFFE00 0xFFFF 8

next (nexti) Command
Advances program execution to the next statement or instruction, respectively. For COBOL programs,
advances execution to the next verb. Execution steps over any function calls or PERFORM statements
executed within the step range.
Next and nexti are similar to the step (stepi) Command.
{next|nexti} [count]

Where:
count

A positive integer specifying the number of statements (next command) or instructions (nexti
command) to advance.

After you enter a next or nexti command, you can repeat it by pressing the Enter key at the
next Native Inspect prompt. The effect is the same as if you had entered another next or nexti
command with the same count value. This ability to repeat continues until you enter any other
Native Inspect command.

Example
To step execution using the next, step, and finish commands:
(eInspect 1,329): next
 351 pcb = PCB_create();
(eInspect 1,329): step
PCB_create () at \SIERRA.$YOSE1.SYMBAT1.SCXXTST:226
 226 {
(eInspect 1,329): next

102 Native Inspect Command Syntax

 227 PCB_t *pcb = (PCB_t *) malloc(sizeof(PCB_t));
(eInspect 1,329): next
 228 memset(pcb, 0, sizeof(PCB_t));
(eInspect 1,329): finish
Run till exit from #0 PCB_create () at \SIERRA.$YOSE1.SYMBAT1.SCXXTST:228
0x70002520:0 in pcbDataStructs_initialize ()
 at \SIERRA.$YOSE1.SYMBAT1.SCXXTST:351
 351 pcb = PCB_create();
Value returned is $2 = (PCB_t *) 0x0

nocstm Option
The nocstm command-line option specifies that Native Inspect is not to execute the commands in
the custom startup file named EINSCSTM. You can enter the nocstm option only when you explicitly
start Native Inspect with a RUN EINSPECT. You cannot specify the nocstm option with a RUND
command.
Refer to Reading the Custom File (page 23) for more information on the custom startup file.
--nocstm

output Command
Displays the value of the specified expression. The output command is identical to the print
command except that its output is not saved in the value history buffer ($1, $2, and so on).
output [/format] expressions

Where:
format

An optional count, format, and size specification. See Syntax of /format (page 63).
expression

Evaluates the expression and displays its value. See Syntax of expression (page 62).

print Command
Evaluates and displays the value of a specified expression.
The print command assigns a number to each output value, and the displayed result is saved in
the value history buffer. You can use the value history buffer to display the result of previous print
commands; specify the number assigned by the print command ($1, $2, $3, and so on).
Entered with no options, redisplays the last value in the value history buffer.
Effective with the H06.14 RVU, you can invoke command line function calls in the program being
debugged from the debugger command line by using the print command.

NOTE:
• Command line function calls cannot be used with snapshot files.

• Functions that include a breakpoint cannot be involved in a call chain initiated via the command
line call mechanism.

• Command line calls are not yet available for C++, COBOL, and pTAL.

• Command line calls are not available when application is stopped in a dynamic-link library
(DLL).

Special options accepted by the print command are:

• $ refers to the last print display.

• $$ refers to the next-to-last print display.
Related Commands: info locals, info args

nocstm Option 103

print [format] expression

Where:
format

An optional count, format, and size specification. See Syntax of /format (page 63).
expression

Evaluates the expression and assigns its value to a variable.
In COBOL expressions, use COBOL operators, and in C and pTAL expressions, use the standard
C assignment operators, including +=, *=, and \=.
See Syntax of expression (page 62).

Considerations
• Other functions of the print command (illustrated in Examples (page 105)) include the

following:

FunctionPrint Command Form

Displays a variable formatted as a specific type (specified by a
C/C++ cast expression)

print (cast-type) variable

Displays a buffer formatted as the specified structure. Equivalent to
the DISPLAY AS command in Inspect.

print {struct} buffer

Displays the specified number of instances of a variable. Example:
print var@2

print variable@elements

Displays a range of array elements.print array [index] @count

Displays a static variable in a specific file or function
print file::variable

print function::variable

Evaluates an expression and assigns the result to a variable. The
expression can be any valid C expression. This command is
equivalent to the following command: set variable var = exp

print var=exp

Calls a procedure, function or subroutine in the process being
debugged.

print func (args)

call func using arg [,arg]…]

• To view an appropriately formatted SPI buffer, you must use Visual Inspect instead of Native
Inspect. Native Inspect does not support the formatting of SPI buffers.

• For C/C++, character pointers are displayed until a terminating null or the configured maximum
number of elements is displayed. Use the following command to control the maximum number
of elements printed for strings or arrays:
set print elements max-number

For pTAL code, only one character of a pointer to a string is printed. An array of strings is
printed as an array with each different element printed separately. If the elements are all
characters, however, they are printed as one string.

• After you enter a print command, you can repeat it by pressing the Enter key at the next Native
Inspect prompt. The effect is the same as if you had entered another print command with the
same parameters. This ability to repeat continues until you enter any other Native Inspect
command.

104 Native Inspect Command Syntax

Examples
• To display constant expressions, (compared to display of eq command), use the following

command:
(eInspect 3,638): print /x 0x6ffffe40 + (47 *7)
$9 = 0x6fffff89
(eInspect 3,638): print /c 64
$8 = 64 '@‚
(eInspect 3,638): eq 64
OCT: 000100 DEC: 64 HEX: 0x0040 ASCII: '...@'

• To display variable addresses:
(eInspect 3,657): print &PCBList
$5 = (struct PCBList_s *) 0x8000320

• To display the address of a function:
(eInspect 3,663): print &PCB_addAttribute
$12 = (void (*)(PCB_t *, PCBAttribute_t *)) 0x70001820:0 <PCB_addAttribute>

• To display character pointers (note that character pointers are automatically dereferenced)
use the following command:
(eInspect 3,638): print new_ptr
$11 = 0x80001c0 "In print_and_break\n“
(eInspect 3,638): set print elements 10
(eInspect 3,638): print new_ptr
$14 = 0x80001c0 "In print_a"...

• The following example uses the COBOL concatenation operator:
(eInspect 0,434): print “E” & “M”
$1 = “EM”
(eInspect 3,434): print “ABC” & “DEF”
$2 = “ABCDEF”

• To display pointers:
(eInspect 3,657): print pcb
$1 = (PCB_t *) 0x80048a0
(eInspect 3,657): print *pcb
$2 = {
 state = 0,
 flags = {
 word = 0,
 item = {
 isBad = 0,
 isReady = 0,
 isHappy = 0,
 isStarved = 0,
 waitState = 0
 }
 },
 dispatchCount = 0,
 pin = 0,
 attributeCount = 2,
 attribute = {0x8004ee0, 0x8004f40, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}
}
(eInspect 3,657): print pcb->flags.item.isHappy
$3 = 0

• To modify registers:
(eInspect 3,663): print $gr33
$21 = 1879062640
(eInspect 3,663): print $gr33 = 10
$22 = 10
(eInspect 3,663): print $gr33
$23 = 10

print Command 105

(eInspect 3,663): print $gr33 += 10
$24 = 20

• To display an instruction pointer:
(eInspect 3,663): print /x $ip
$29 = 0x70002bf0

• Use the @ symbol to control the number of instances printed. In this example, three commands
contain the @ symbol. The first command displays two instances of the entire attribute array.
The second command displays three array elements starting at element 1. The third command
displays 50 array elements starting at element 0:
(eInspect 4,782): print pcb->attribute
 $2 = {0x8004ee0, 0x8004f40, 0x8004fa0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}

(eInspect 4,782): print pcb->attribute@2
 $3 = {{0x8004ee0, 0x8004f40, 0x8004fa0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, {
 0xffffffffaaaaaaaa, 0x10, 0x1, 0x80048a0, 0xffffffffaaaaaaaa, 0x40, 0x0,
 0x0, 0x0, 0x10000}}

(eInspect 4,782): print pcb->attribute[1]@3
 $4 = {0x8004f40, 0x8004fa0, 0x0}

(eInspect 4,782): print gBuffer[0]@50
 $5 = '\000' <repeats 49 times>

• To display a buffer formatted as a ‘C’/C++ struct or pTAL record, (use the set print
pretty command to control display format of structures), use the following command:
(eInspect 3,663): print gBuffer
$7 = '\000' <repeats 15 times>, "\003\b\000N\340\b\000O@\b\000O\240",
'\000' <repeats 27 times>
(eInspect 3,663): print {PCB_t} gBuffer
$8 = {
 state = 0,
 flags = {
 word = 0,
 item = {
 isBad = 0,
 isReady = 0,
 isHappy = 0,
 isStarved = 0,
 waitState = 0
 }
 },
 dispatchCount = 0,
 pin = 0,
 attributeCount = 3,
 attribute = {0x8004ee0, 0x8004f40, 0x8004fa0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
 0x0}
}

• To display a range of array elements, (use the set print array to control display format
of arrays), use the following command:
(eInspect 3,663): print gBuffer
$23 = "0123456789\000\000\000\000\000\003\b\000N\340\b\000O@\b\000O\240",
'\000' <repeats 27 times>
(eInspect 3,663): print gBuffer[2]@5
$24 = "23456"

• To display complex C/C++ data structures:
(eInspect 3,657): print PCBList->entry[0]->ref.pcb->attribute->att.system
$12 = {
 privLevel = 5
}

• To display cast expressions:
(eInspect 1,463): print pcb->flags
$4 = {

106 Native Inspect Command Syntax

 item = {
 isBad = 0,
 isReady = 1,
 isHappy = 0,
 isStarved = 0,
 waitState = 0
 }
}(eInspect 1,463): print /t (unsigned long) pcb->flags
$5 = 1000000000000000000000000000000

• To display an item from the value history list:
(eInspect 1,463): print *PCBList.entry[0]
$11 = {
 refCount = 2,
 ref = {
 address = 134236320,
 pcb = 0x80048a0
 }
}
(eInspect 1,463): print $11
$12 = {
 refCount = 2,
 ref = {
 address = 134236320,
 pcb = 0x80048a0
 }
}

• To modify variables:
(eInspect 3,663): print pcb->pin
$26 = 0
(eInspect 3,663): print pcb->pin=4
$27 = 4
(eInspect 3,663): print pcb->pin
$28 = 4

(eInspect 3,663): print pcb->attributeCount = PCBList.entry[1]->ref.pcb->attributeCount
$33 = 0

• To modify variables:
(eInspect 4,219): p structure3
$1 = {
 c = 0x70000c00 "From call2",
 d = 2
}
(eInspect 4,219): p structure3.d=sizeof(structure3)
$2 = 16
(eInspect 4,219): p structure3
$3 = {
 c = 0x70000c00 "From call2",
 d = 16
}(eInspect 4,219):

• To display the value of a COBOL expression:
(eInspect 7.390): print DI
$3=132
(eInspect 7,390): print DI IS NOT GREATER THAN 0
$4=’T’
(eInspect 7,390): print DI GREATER THAN 0
$5=’T’
(eInspect 7,390): print DI=6
$6=6

print Command 107

priv Command
Sets, unsets, or shows the privilege level of the debugging session. The privilege level in turn controls
whether a user can perform privileged debugging operations such as setting breakpoints on or
stepping in to privileged functions.
To use the priv command to turn privileged debugging on or off, you must be logged on as the
super ID.
Entered with no options, displays the current priv mode status.
priv [on|off]

ptype Command
Prints the definition of a specified data type or the data type of a variable or expression.
ptype [data-type|variable-name]

Where:
data-type

The data type about which you want information. For C/C++ code, data-type can have the
form class class-name, struct struct-tag, union union-tag, or enum enum-tag.

variable-name

The name of a variable whose data type you want displayed.
The ptype command is similar to the whatis Command except that ptype prints the detailed
description, while whatis prints just the name of the data type.

Example
• To display the definition of the struct named a_struct:

(eInspect 7,519): ptype a_struct
type = struct type_struct {
 int i;
 char c;
}

• COBOL example:
(eInspect 7,444): ptype EM
type = PIC X(4)
(eInspect 7.444): ptype RECX
type = RECORD
 02 NATA NATIVE-4
 02 NATB NATIVE-8
(eInspect 7,444): ptype ARRX
type = NATIVE-2 OCCURS 4 TIMES

pwd Command
Prints the current working directory.
pwd

Example
To display the current working directory:
(eInspect 2,1142): pwd
Working directory \PIPPIN.$D0101.INSPECT.

quit (exit) Command
Ends a Native Inspect session. See also exit (quit) Command (page 79).

108 Native Inspect Command Syntax

{quit|exit}

When you enter a quit or exit command, Native Inspect detaches itself from the current process
and stops.
If you exit while a process is suspended, it is automatically resumed.
If breakpoints are set in a process, Native Inspect prompts you whether you want to continue. If
you do, another debugger instance is started if one of the breakpoints is hit.

reg Command
A Tcl command that displays registers for the currently selected stack frame.
reg

Table 13 lists the names of the registers on a TNS/E native NonStop system. The info, print, and
reg commands in particular use register names. You can use any C assignment operator (such as
+= or –=) when assigning a value to a register.

Table 13 TNS/E Register Names

Register NamesType of Register

$gr0 - $gr127General registers

$fr0 - $fr127Floating-point registers

$pr0 - $pr63Predicate registers

$br0 - $br7Branch registers

$bsp, $ec, $lcApplication registers

$ip (instruction pointer), $cfm (current frame marker),
$psr (program status register), $sp (stack pointer)

Other registers

save Command
Creates a snapshot file (or save file) of the current TNS/E or TNS emulated process that you can
debug at a later time. Snapshot files have the file code 130 and are used for offline debugging.
Snapshots for TNS processes can only be read by Visual Inspect and Inspect and snapshots for
32-bit TNS/E processes can only be read by Visual Inspect and Native Inspect. Snapshots for
64-bit processes can only be read by Native Inspect.
save name [compression] [!]

Where:
name

The OSS pathname or Guardian file name , (or a file name for the default location), where the
snapshot file is written.

compression

When debugging a 64-bit process, the save command allows control over the compression
type applied to the file. You can specify whether or not to apply compression, and which
compression algorithm to use.
It can be one of the following:

• bzip2

• gzip

Indicates the compression algorithm type.

• none

Indicates no compression is required.

reg Command 109

NOTE: If no value is specified, the debugger may or may not compress the snapshot file
based on its size.

!

Forces the overwriting of the specified snapshot file. If you do not include the exclamation
mark(!), and the specified file already exists, Native Inspect reports an error.

The save command returns control to the target process. Consequently, when you list the save
in a sequence of commands by using the commands command, the save command must always
be the final command in the sequence.

select-frame Command
Is the “silent” version of the frame (select-frame) Command, and the syntax of the two commands
is similar. Select-frame only selects a frame and does not print out information about the frame.

set Command (environment)
Sets debugging session options and environment variables. Compare with the set Command
(variable), which modifies the value of a variable in the program being debugged. All the
environment attributes available to the set command are also supported by the show Command.
Some attributes, however, are supported only by the show command.
set attribute value

Where attribute value is one of the following:
complaints max-number

Sets the maximum number of complaints about incorrect symbols. The default value is 0 (zero).
continue-to-main {on|off}

Specifies whether or not execution is to automatically advance to the main program when you
start a C/C++ program with RUND (Guardian) or run -debug (OSS). The default value is
on (execution automatically advances to main()). If you specify off, you must set a breakpoint
to stop execution at main(). For more information on setting a breakpoint at main(), see
Advancing Execution to main() in C/C++ Programs (page 36).

check sub-attribute value

Where sub-attribute is one of the following:
• range {on|off|warn|auto}

Sets range checking.

• type {on|off|warnauto}

Sets type checking.

confirm {on|off}

Sets whether Native Inspect prompts for confirmation before performing potentially dangerous
operations.

height number-lines

Sets the number of lines that are printed to the screen before Native Inspect issues a “Continue
Output” prompt. Specifying 0 disables prompting.

history sub-attribute value

Sets attributes of the command history maintained by Native Inspect.
sub-attribute is one of the following:
• expansion {on|off}

110 Native Inspect Command Syntax

Sets history expansion on command input.

• filename {on|off}

Sets the name of the file in which the command history is recorded.

• save {on|off}

Sets saving of the history record on exit from Native Inspect.

• size number

Sets the size of the command history. The default value is 256.

input-radix {8|10|16}

Sets the default input radix for entering numbers.
language {ptal|c|c++|cobol}

Sets the current source language.
When debugging pTAL using Native Inspect:

• You must use C/C++ syntax.

• Use the == operator for equality; use = for assignment.

• Pointers are not automatically dereferenced; you must use the C * operator.

• In subprocs, you must qualify variable names in the containing proc by using this syntax:
procname::localvarname

Note that PROC and SUBPROC names are listed in the stack trace in uppercase letters.

• You can access global variables hidden by a local or sublocal by using ::localvarname.

• To set breakpoints on subprocs, use the dot operator to qualify the subproc name:
procname.subprocname

See Syntax of expression (page 62) for more information about using pTAL with Native
Inspect.

listsize number

Sets the value of the size of the list displayed by the list command. The default value is 10.
max-function-matches n

Sets the maximum number of function matches reported by the info functions command.
Specify an integer as the value of n or set the value to zero (0) to report all matches.

mode {user | priv [on | off]}

Sets the working session as priv (privileged) mode for process debugging. Applies to individual
debug sessions; restricted to the super ID (user 255,255).

optimized-code-warning [off | on]

Sets a warning indicating that the debug information is incomplete. The default is set to off.
optimized-loc-print N

Controls how many “near” locations (near to the current instruction address) are revealed to
the end user when a variable is not found at the current location but has a location and value
near to the current instruction.
N is the maximum number of locations listed. The default is 3 locations. Setting the number to
0:
set optimized-loc-print 0

disables the feature entirely.
output-radix {8|10|16}

Sets the output radix for printing of values.

set Command (environment) 111

print sub-attribute value

Where sub-attribute is one of the following:
address {on|off}

sets printing of addresses.
array {on|off}

Sets pretty printing of arrays (prints one field per line rather than compressing multiple
fields on one line). See the Examples (page 105) following the print command syntax.

dereference [{on|off}]

Controls the display of char * variables. The default is on , and char * variables are
automatically dereferenced for display. When you specify the off option, char * variables
are not dereferenced for display. See example of dereference usage.

asm-demangle {on|off}

Sets demangling of C++ names in disassembly listings.
cobol-arg-values {on|off}

For COBOL programs, sets displaying of argument values for when a breakpoint is
encountered, a backtrace is done, or execution steps into a function. If this parameter is
set to OFF (the default setting), Native Inspect displays only the addresses of arguments
when any of these events occur.

demangle {on|off}

Sets demangling of encoded C++ names when displaying symbols.
elements number

Sets the limit of string chars or array elements to print. The default value is 200 characters.
max-symbolic-offset number

Sets the largest offset that is printed in the symbol+offset form.
null-stop {on|off}

Sets printing of char arrays to stop a first null char.
object {on|off}

Sets printing of objects; derives type based on vtable information.
pretty {on|off}

Sets pretty printing of structures (prints one field per line rather than compressing multiple
fields on one line). See the following examples.

repeats number

Sets threshold for repeated print elements. The default value is 10.
sevenbit-strings {on|off}

Sets printing of 8-bit characters in strings as \nnn.
static-members {on|off}

Sets printing of C++ static members.
symbol-filename {on|off}

Sets printing of source file name and line numbers with symbol.

symbolic-addr {on|off}

sets printing of the symbolic address (proc-name + offset) adjacent to the numeric
address.

union {on|off}

Sets printing of unions interior to structures.
vtable {on|off}

Sets printing of C++ virtual function tables.

112 Native Inspect Command Syntax

radix {8|10|16}

Sets the input and output number radices.
symbol-reloading {on|off}

Sets dynamic symbol table reloading multiple times in one run.
verbose {on|off}

Sets verbosity (information about progress is displayed as a command executes).
width number

Sets the number of characters Native Inspect expects in a line.

Examples
• To set pretty printing on and off:

(eInspect 4,770): set print pretty off
(eInspect 4,770): print pcb

 $2 = (PCB_t *) 0x0
(eInspect 4,770): c

 Continuing.
 Breakpoint 3, pcbDataStructs_initialize ()
 at \SIERRA.$YOSE1.SYMBAT1.SCXXTST:362
 362 PCB_addAttribute(pcb, PCBAttribute_createSystem(5));
(eInspect 4,770): print *pcb

 $3 = {state = 0, flags = {word = 0, item = {isBad = 0, isReady = 0,
 isHappy = 0, isStarved = 0, waitState = 0}}, dispatchCount = 0, pin = 0,
 attributeCount = 0, attribute = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
 0x0, 0x0}}
(eInspect 4,770): set print pretty on
(eInspect 4,770): print *pcb

 $4 = {
 state = 0,
 flags = {
 word = 0,

 item = {
 isBad = 0,
 isReady = 0,
 isBad = 0,
 isReady = 0,
 isHappy = 0,
 isStarved = 0,
 waitState = 0
 }
 },
 dispatchCount = 0,
 pin = 0,
 attributeCount = 0,
 attribute = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}
 }

• To set pretty printing for arrays:
(eInspect 4,770): set print array off
(eInspect 4,770): print pcb->attribute
 $5 = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}
(eInspect 4,770): set print array on
(eInspect 4,770): print pcb->attribute
 $6 = {0x0,
 0x0,
 0x0,
 0x0,
 0x0,
 0x0,
 0x0,
 0x0,
 0x0,
 0x0}

set Command (environment) 113

• To set the number of elements to print:
(eInspect 4,774): set print elements 5
(eInspect 4,774): print pcb->attribute
 $5 = {0x0,
 0x0,
 0x0,
 0x0,
 0x0...}

• To set print dereference, use the following commands:
(eInspect 4,774): list 1
 1 char * hw = "hello world!";
 2 main()
 3 {
 4 printf("%s\n", hw);
* 5 }
(eInspect): show print dereference
Suppress dereferencing of char * is on.
(eInspect): set print dereference
(eInspect): print hw
$3 = 0x70000900 "hello world!"
(eInspect): set print dereference off
(eInspect): print hw
$4 = 0x70000900

• To set max-function-matches, use the following commands:
(eInspect): set max-function-matches 5
(eInspect): show max-function-matches
Maximum number of function matches reported by info functions
(set to zero to report all matches) is 5.
(eInspect): set max-function-matches 0
(eInspect): show max-function-matches
Maximum number of function matches reported by info functions
(set to zero to report all matches) is unlimited.

• Printing an optimized variable shows where the variable has not been optimized away and
is available. This is intended mostly for “live target” (non-snapshot) debugging. You can then
either move forward in the execution or place a break at an earlier point to find a line/address
where the value of a variable prints successfully. The number of closest locations is set to 3,
but can be controlled using set optimized-loc-print:
(eInspect 3,904):p i
Due to optimization, the address/value of "i" is unknown for the
current location.
Closest location(s) where it is available:
1) 0x70001452 to 0x70001540 (in line 84 to 88) in register $r39
2) 0x700017c1 to 0x70001890 (in line 99 to 103) in register $r32

set Command (variable)
Evaluates an expression and assigns the resulting value to a variable.
set [variable] var-name {expression|value}

Where:
var-name

The name of a variable in the current process.
expression

is an expression whose value you want to be assigned to var-name. See Syntax of expression
(page 62).

114 Native Inspect Command Syntax

value

A value you want to assign to var-name.

Consideration
Although the keyword variable is optional, you must include it if the name of the variable you
are setting conflicts with the name of an option supported by the set Command (environment).
For example, a variable name p conflicts with the print option of the set command, and entering
a set command without the variable keyword results in an error:
(eInspect 1,187): set p=6
Undefined set print command: "=6". Try "help set print".

In this case, you must use one of the following alternatives:

• Modify the value of the variable by using the assignment operator with the print command:
print p=6

• Include the variable option in your set command:
set variable p=6

set heap-check Command (memory leak detection)
Displays settings for the commands that debug memory problems.
set heap-check attribute value

Where:
attribute value

Where attribute value is one of the following:
[on | off]

Toggles the capability for detection of leaks, heap profiles, bounds checking, and checking
for double free.

block-size num-bytes

Instructs Native Inspect to stop the program whenever it tries to allocate a block larger than
num-bytes in size.

frame-count num

Controls the depth of the call stack collected. Larger values increase run time. The default
value is four (4) stack frames.

free [on | off]

When set to on, forces Native Inspect to stop the program when it detects a call to free()
with an improper argument, a call to realloc() that does not point to a valid currently
allocated heap block, or a call to free a block of memory that has been corrupted.

heap-size num-size

Instructs Native Inspect to stop the program whenever it tries to increase the program heap
by at least num-bytes.

leaks [on | off]

Controls Native Inspect memory leak checking.
min-heap-size num

This option reports the heap allocations that exceed the specified number (num) of bytes
based on the cumulative number of bytes that are allocated at each call-site, which is
inclusive of multiple calls to malloc at a particular call site.

set heap-check Command (memory leak detection) 115

min-leak-size num

Collects a stack trace only when the size of the leak exceeds the number of bytes you
specify for this value. Larger values improve run-time performance. The default value is
zero (0) bytes.

string [on | off]

Toggles validation of calls to strcpy, strncpy, memcpy, memccpy, memset, memmove,
bzero, and bcopy. Native Inspect validates calls to strcat and strncat.

Examples
• To enable heap checking, enter the following:

For 32-bit application:
TACL> rund minheap /lib $system.sys00.zrtcdll/ executable arguments
(eInspect 0,248)set heap-check on

For 64-bit application:
TACL> run –minheap —lib=/G/system/sys00/yrtcdll executable arguments
(eInspect 0,248)set heap-check on

To obtain a snapshot heap profile, run the debugger and load the program, follow the steps
as shown in the examples under the info Command (memory leak detection) (page 90).

• To enable leak checking, enter the following:
For 32-bit application:
TACL> rund minheap /lib $system.sys00.zrtcdll/ executable arguments
(eInspect 0,248)set heap-check leaks on

For 64-bit application:
TACL> run –minheap —lib=/G/system/sys00/yrtcdll executable arguments
(eInspect 0,248)set heap-check leaks on

To view the leak profile, run the debugger and load the program, follow the steps as shown
in the examples under the info Command (memory leak detection) (page 90).

show Command
Displays either the environment settings for Native Inspect or the value of a variable in the program
being debugged.
show [attribute|{history|print|check} [sub-attr]]

Where:
attribute

This is typically one of the same attributes as for the set Command (environment).
The history, print, and check attributes are as described for the set Command
(environment).
Attributes supported only by the show command (not by the set command) include the
following:
commands

Displays the history of commands. Displays ten lines of commands.
copying

Displays conditions for redistributing copies of Native Inspect.
directories

Displays current search path for finding source files. Native Inspect always searches the
compilation directory ($cdir) and the current working directory ($cwd). You can set
additional subvolumes for searching by using the dir Command.

116 Native Inspect Command Syntax

heap-check

Displays all current settings for memory checking.
listsize

Displays the current value of the size of the list displayed by the list command.
user commandname

Displays definitions (but not documentation) of user-defined commands. If commandname
is not specified, this displays the definitions for all user-defined commands.
When user-defined commands are executed, the commands of the definition are not printed.
An error in any command stops execution of the user-defined command.
If used interactively, commands that would ask for confirmation proceed without asking
when used inside a user-defined command. Many commands that normally print messages
to say what they are doing omit the messages when used in a user-defined command.

version

Displays the version of Native Inspect, of its direct parent GDB, and of the Tcl scripting
language.

warranty

Displays the types of warranty for Native Inspect.

Example
To display the source search path:
(eInspect 1,-2): show directories
Source directories searched: $d0117.tests:$cdir:$cwd

snapshot Command
Opens a TNS/E native process snapshot file (file code 130) for analysis.
snapshot pathname

pathname

The OSS pathname or Guardian file name of a TNS/E native snapshot file (with file code 130)
that you want to open.

You cannot enter a snapshot command if Native Inspect already has a debugging target open
(a native process or snapshot file). You must close the existing target before using the snapshot
command.

source Command
Reads commands from the specified input file. The source command is the WDB and GDB
equivalent of the OBEY command supported by Inspect and in many command interpreters on HP
NonStop systems.
source pathname

Where:
pathname

The OSS pathname or Guardian file name of a file containing Native Inspect commands.

Example
The following example reads commands from the file $disk.mysubvol.ninspcmd (assuming
your current default directory is $disk.mysubvol). However, the initial attempt specifies the
wrong file name, invoking an error message:

snapshot Command 117

(eInspect) source inspcmd
Can not locate command file ninspcmd(eInspect)
source ninspcmd

Suppose you have the following commands in a file:
list
show language
info target
show dir

If you run a program and source this file in, you will see the following:
(eInspect 1,749): source $data3.subvol.ex
 44 void call9(char *string,long long q);
 45
 46 void print_and_break (void) {
 47
 48 char *new_ptr = "In print_and_break\n";
 49 int z = 7;
 50 printf ("About to call DEBUG'\n");
 51 }
 52 void main (void) {
* 53 char *local_ptr = "From main";
The current source language is "auto; currently c".
Symbols from "\PELICAN.$DATA3.SUBVOL.GARTEST".
NSK child process:
 Using the running image of child process 749.
Source directories searched: $cdir:$cwd

step (stepi) Command
Advances program execution by one source statement or by a specified number of statements. For
COBOL programs, execution advances to the next verb. Execution steps “in” any function calls or
PERFORM statements that are executed within the step range.
If a function call is made within the stepping range, the call is followed and execution suspended
after the function’s prolog code is executed. Execution transparently steps though any run-time
environment functions, such as import stubs, for which stack unwind information is not present.
The stepi command advances program execution similarly, but the units of stepping is instructions.
Also, function prolog code is not automatically executed by the stepi command. You will have
to step through the prolog code before the stack frame is properly initialized.
The step and stepi commands are similar to the next (nexti) Command.
{step|stepi} [count]

Where:
count

A positive integer, the number of statements (step command), or instructions (stepi command)
that you want to advance.

For both step and stepi, if the program calls a privileged function but the set mode command
has not been used to enable privileged debugging, execution steps over the function.
After you enter a step or stepi command, you can repeat it by pressing the Enter key at the
next Native Inspect prompt. The effect is the same as if you had entered another step or stepi
command with the same count value. This ability to repeat continues until you enter any other
Native Inspect command.

Example
See the example of stepping execution for the next (nexti) Command (page 102).

118 Native Inspect Command Syntax

switch Command
Transfers the current process to either Visual Inspect or Inspect, as appropriate:

• Transfers a TNS/E native process to Visual Inspect.
You must be running a Visual Inspect client (on Windows) connected to the NonStop system
using the same user ID as the TNS/E native process.

• Transfers a TNS process to Inspect.
switch

After you enter a switch command, Native Inspect suspends command prompting until one of
the following happens:

• The process is transferred back to Native Inspect.

• You press the Break key.

• The process terminates.
Native Inspect continues to maintain the associated state for the process until the process terminates
or is transferred back to Native Inspect.
Breakpoint attributes are not passed between debuggers. For more information, see Switching
Between Debuggers (Inspect and Visual Inspect) (page 31).

symbol-file (symbol) Command
Opens a TNS/E native code file (with file code 800) for building internal symbol tables. The new
symbol table data is added to the existing data.

• Entered with no symbol-file name, prompts you before deleting all symbol files with per-process
scope associated with the current process.

• Entered with only the -g option, prompts you before deleting all global symbol files associated
with the current process.

symbol is an alias for symbol-file.
{symbol|symbol-file} [-g] [-readnow] pathname

Where:
-g

Loads a symbol file that has global scope. Symbols are visible to all processes being debugged.
Entered without the -g option, loads a symbol file that has per-process scope. Symbols are
visible only to the current process.
If there is no current process, the added symbol file has global scope by default, and the -g
option is optional.
You can add the same file with per-process scope and global scope.

-readnow

Expands the symbol table immediately rather than incrementally as needed.
pathname

The OSS pathname or Guardian file name of the TNS/E native code file that Native Inspect
is to open.
The symbol command reads in the symbols for the specified loadfile at the corresponding
loadfile’s actual load address, if it can be determined. Otherwise, the symbols are read in at
the loadfile’s preferred load address, as determined at static link time, and recorded in the
loadfile’s header.

switch Command 119

Related Commands
• To delete symbols data for a specific file, use the unload-symbol-file Command.

• To load a symbol file at a specific address, use the add-symbol-file Command.

• To list the symbol files currently loaded, use the info Command with the symbol-files
option.

For more information, see Optionally Loading Symbols Information (page 34).

Example
To load a symbol file and display information about the symbol file:
(eInspect 4,798): symbol-file $system.sys00.nNonStopsym
Reading symbols from $system.sys00.nnsksym...done.
(eInspect 4,798): info symbol-files
Loaded Symbol Files:
$system.sys00.nnsksym (0x50000000) (user loaded)
\PIPPIN.$D0117.SYMBAT1.XC89TST0 (0x70000000)

tbreak Command
See the description of the break (tbreak) Command (page 67).

tj Command
Traces the stack relative to the location stored in a jump buffer. Initialize jmp_buf by calling setjmp
(in C/C++) to define a location to which a subsequent call to longjmp can branch. The tj command
lists frames from the point at which the program calls setjmp to initialize the buffer until the base
of the stack is reached.
tj native-address

Where:
native-address

The address that contains the jump buffer.

NOTE: Unexpected results can occur if the native address specified does not correspond to
a valid native jump buffer. See Syntax of native-address (page 61).

tu Command
Traces the stack relative to the location stored in a ucontext buffer. Set up ucontext_t* as
the third parameter of a signal handler function (in C/C++ or pTAL). The tu command lists stack
traces from a ucontext buffer contained at the specified address.
tu native-address

Where:
native-address

The address that contains the ucontext buffer.

NOTE: Unexpected results can occur if the native address specified does not correspond to
a valid ucontext. See Syntax of native-address (page 61).

Examples
• To obtain the name of the jump buffer (in this case, env), and then trace the stack relative to

the jump buffer:
(eInspect 1,1028): info var
All defined variables:

120 Native Inspect Command Syntax

File \SIERRA.$OS.VIVTEST.STEST12:
char NULL[16];
char SEEK_CUR[19];
char SEEK_END[19];
char SEEK_SET[19];
---Type <return> to continue, or q <return> to quit---
char TDMSIGH_TNS_BE_FILLER[39];
char TDMSIGH_TNS_E_FILLER[51];
char _GUARDIAN_HOST[25];
char _GUARDIAN_TARGET[27];
char _TANDEM_ARCH_[24];
char _TANDEM_SOURCE[25];
char __INT32[18];
char __TANDEM[19];

char __XMEM[17];
char __size_t_DEFINED[26];
jmp_buf env;
int errno;
char int64_t[26];

Non-debugging symbols:
 08000230 _initz
 700008d0 _CTORS
 700008d0 _ctors
 700008d8 _DTORS
 700008d8 _dtors
 700008e0 _termz
(eInspect 1,1028):
(eInspect 1,1028): p &env
$1 = (jmp_buf *) 0x8000350
(eInspect 1,1028): tj 0x8000350
#0 0x70001260:0 in main (argc=0, argv=0x60000)
 at \SIERRA.$OS.VIVTEST.STEST12:32
#1 0x70001a20:0 in _MAIN () at \SPEEDY.$DATA06.T8432H01.CPLMAINC:68

• To obtain the address of the ucontext buffer and then trace the stack relative to the
ucontext buffer:
(eInspect 1,1028): info locals
ucp = (ucontext_t *) 0x6fffede0
(eInspect 1,1028): tu 0x6fffede0
#0 0x70000cd0:0 in func3 (p=1879043416, q=0, r=134222120)
 at \SIERRA.$OS.VIVTEST.STEST12:21.030
#1 0x70000e50:0 in func2 (p=5, q=10) at \SIERRA.$OS.VIVTEST.STEST12:21.060

#2 0x70000fa0:0 in func1 (p=5) at \SIERRA.$OS.VIVTEST.STEST12:21.1
#3 0x700012d0:0 in main (argc=1, argv=0x8003010)
 at \SIERRA.$OS.VIVTEST.STEST12:33.1
#4 0x70001a20:0 in _MAIN () at \SPEEDY.$DATA06.T8432H01.CPLMAINC:68

tn (bt) Command
Prints a backtrace of the stack frames.
The bt command is an alias for the tn command. See bt (tn) Command (page 69) .
tn

tn (bt) Command 121

unload-symbol-file Command
Unloads all symbol data associated with a specified loadfile name.

• Entered with no arguments, prompts you before unloading all symbol data having a per-process
scope associated with the current process.

• Entered with only the -g option, prompts you before unloading all symbol files having global
scope.

unload-symbol-file [-g] symbol-file-name

Where:
-g

Unloads a symbol file with global scope.
symbol-file-name

The name of a loadfile whose symbol information you want unloaded.
Related Command: symbol-file (symbol) Command, add-symbol-file Command

unmap-source-name (unmap) Command
Deletes previously set mappings for source file names. The command unmap is an alias for
unmap-source-name.
Related commands: Use the map command to list the existing source file name mappings.
{unmap-source-name|unmap} map-number

Where:
map-number

The number associated with a specific source file name mapping as displayed in the output of
a map-source-name (map) Command.

This command deletes the mapping entry with number map-number. If map-number is the number
of a source file name prefix mapping, than all mapping entries created as a result of this prefix
are also deleted.

Examples
This example shows that when you delete a mapping for a pathname prefix that has resulted in
the creation of new aliases, all such aliases are deleted.

• To display existing mappings:
(eInspect 3,-2): map

4. D:\usr\T1000\src\cpu\mips\x.c is aliased to /v/src/src/cpu/mips/x/c (Prefix match)
3. D:\usr\T1000 is aliased to /v/src
2. D:\usr\T1000\src\cpu\mips\x.c is aliased to /h/src/src/cpu/mips/x/c (Prefix match)
1. D:\usr\T1000 is aliased to /h/src

• To delete alias 1:
(eInspect 3, -2): unmap 1

• To display remaining aliases:
(eInspect 3, -2): map

4. D:\usr\T1000\src\cpu\mips\x.c is aliased to /v/src/src/cpu/mips/x/c (Prefix match)
3. D:\usr\T1000 is aliased to /v/src

In the preceding example, alias 2 was also deleted because it depended on alias 1.

until Command
Continues executing the current process until a specified location is reached, a debugging event
occurs, or the current stack frame returns.

122 Native Inspect Command Syntax

until [locspec]

Where:
locspec

The location where you want execution to stop. See Syntax of locspec (page 59).
If you enter the until command with no arguments, the results are similar to those of the next
command, except that at the bottom of a loop the until command steps through all remaining
iterations.

Examples
• To execute until the function returns:

(eInspect 1,329): until
 - building PCBReadyList: 0, 2, 4
 379 PCBList_add(&PCBReadyList, PCBList.entry[0]);

• To execute until a specified location (line 382):
(eInspect 1,329): until 382
pcbDataStructs_initialize () at \SIERRA.$YOSE1.SYMBAT1.SCXXTST:382
 382 pcb->flags.item.isReady = 1;

up (up-silently) Command
Selects the stack frame that calls the currently selected stack frame. The selected stack frame becomes
the stack frame relative to which program state is displayed. The up command also prints information
about the newly selected stack frame. Related commands are the down (down-silently) Command.
{up|up-silently} count

Where:
count

The number of frames to advance before selecting a stack frame.

Example
• Use the up and down commands and C sources as follows:

(eInspect 4,770): bt
 #0 pcbDataStructs_initialize () at \SIERRA.$YOSE1.SYMBAT1.SCXXTST:362
 #1 0x700016a0:0 in main (argc=1, argv=0x8003010)
 at \SIERRA.$YOSE1.SYMBAT1.SCXXTST:217
 #2 0x700011f0:0 in _MAIN () at \SPEEDY.$RLSE.T8432H01.CPLMAINC:68
(eInspect 4,770): up
 #1 0x700016a0:0 in main (argc=1, argv=0x8003010)
 at \SIERRA.$YOSE1.SYMBAT1.SCXXTST:217
 217 pcbDataStructs_initialize();
(eInspect 4,770): up
 #2 0x700011f0:0 in _MAIN () at \SPEEDY.$RLSE.T8432H01.CPLMAINC:68
 \SPEEDY.$RLSE.T8432H01.CPLMAINC:68: No such file or directory
(eInspect 4,770): down
 #1 0x700016a0:0 in main (argc=1, argv=0x8003010)
 at \SIERRA.$YOSE1.SYMBAT1.SCXXTST:217
 217 pcbDataStructs_initialize();
(eInspect 4,770): down
 #0 pcbDataStructs_initialize () at \SIERRA.$YOSE1.SYMBAT1.SCXXTST:362
 362 PCB_addAttribute(pcb, PCBAttribute_createSystem(5));

• Use the up and down commands for COBOL sources as follows:
(eInspect 7,416): bt
#0 EMMA.LISA () at \SIERRA.$AUDIT.DIVA.CBINIT:155
#1 0X70006950:0 in EMMA () at \SIERRA.$AUDIT.DIVA.CBINIT:136
#2 0x70003110:0 in EMMA () at \SIERRA.$AUDIT.DIVA.CBINIT:53

up (up-silently) Command 123

(eInspect 7,416): up
#1 0x70006950:0 in EMMA () at \SIERRA.$AUDIT.DIVA.CBINIT:136
 136 Call “Lisa”.
(eInspect 7,416): up
#2 0x70003110:0 in MAIN () at \SIERRA.$AUDIT.DIVA.CBINIT:53
 53 Call “Emma”.
(eInspect 7,416): down
#1 0x70006950:0 in EMMA () at \SIERRA.$AUDIT.DIVA.CBINIT:136
 136 Call “Lisa”.
(eInspect 7,416): down
#0 EMMA.LISA () at \SIERRA.$AUDIT.DIVA.CBINIT:155
 155 DISPLAY “In Lisa”.

vector Command
Changes the process that is designated as the current process when you are debugging more than
one process. The current process is the process to which debugger commands apply.
vector [pin] | [$process-name]

Where:
pin

The process ID or process number of the process that you want to designate as the current
debugging process. The command fails if you specify an invalid or nonexistent pin. Do not
include the CPU number. For example, the pin for process 3,248 is 248.

$process-name

The name of the process or process-pair you want to designate as the current debugging
process. The command fails if you specify an invalid or nonexistent process name.

Considerations
Consider the following when using the vector command:

• Use the info Command with the sessions option to list the sessions running under one
instance of Native Inspect. Use this command during multiprocess debugging.

• The vector command preserves debugging attributes you have set for the previously
designated process.

• When privileged debugging is enabled in Native Inspect, use the vector command to view
the state of any process in the CPU without having to attach to the process.

version Option
A command-line option that displays the versions of Native Inspect, GDB, and the Tool Command
Language (Tcl). The show command with the version option displays the same output. (See show
Command (page 116)).
-- version

vq Command
Displays information about process segments or, if you specify a segid, changes the selectable
segment viewed by Native Inspect.
vq [segid]

Where:
segid

The segment ID for the segment about which to display information.

124 Native Inspect Command Syntax

The segment corresponding to segid becomes the current in-use segment (marked with the letter
g) for Native Inspect commands. (The current in-use segment for the process itself is marked with
the letter p.)
If you do not specify a segid, the vq command displays information about the extended segments
allocated by the current process.

wait Command
Instructs Native Inspect to stop prompting and wait for a Debug event to occur or for you to press
the Break key.
You might need to use the wait command when debugging multiple processes because debugging
events for processes other than the current process are reported only when Native Inspect waits
(implicitly or explicitly) for events for the current process.
wait

whatis Command
Prints the data type of a specified expression.
whatis expression

Where:
expression

An expression used in the current debugging target process.
The whatis command is similar to the ptype Command, except that ptype prints detailed
information about the data type, and whatis prints just the name of the data type.

which Command
The which command prints file, function, and line information of the specified (text or data) symbol.
which symbol

Where:
symbol

Specifies the symbol for which the data is retrieved. See symbol-file (symbol) Command
(page 119).

Example
(eInspect): which main
Line 1346 of "myprog.c"
 starts at address 0x4000000000161720 <main>
 and ends at 0x4000000000161740 <main+0x20>.

x Command
Examines memory in any of several formats, independently of your program’s data types.
x [/format] address

Where:
/format

Specifies three optional specifications for format, size, and count of memory elements you want
to display. See Syntax of /format (page 63).
The count must be first, but you can specify the format and size specifications in any order as
follows:

wait Command 125

format

The following options are supported:
• a – address

• c – char

• d – signed decimal

• f – float

• i – instruction

• o – octal

• s – string

• t – binary

• u – unsigned decimal

• x – hexadecimal
size

The following options are supported:
• b – byte

• h – half word (16 bits)

• w – word (32 bits)

• g – giant (64 bits or 8 bytes)
address

The address in memory at which you want the display to start.
For additional details regarding COBOL programs, see Chapter 3: Using Native Inspect With
COBOL Programs.

Default Values
The defaulting rules for arguments to the x command enable you to easily display successive
memory ranges using the same formatting:

• Default address – If you do not specify an address, the x command displays memory following
the last address examined, or 0 if no address was previously examined.

• Default format – If you do not specify format, the x command uses the format specifications
(format, size, and number) that you most recently specified with the x command.

These defaults (the last address examined, and the format specification) are set by a number of
commands—the x command, the info breakpoints command, the info line command,
and the print Command when you use it to display memory.

Convenience Variables $_ and $__
The convenience variables $_ and $__ store information about the most recent x command. The
convenience variable $_ is automatically set by the x command to the last address examined,
and $__ stores the contents of that address formatted as specified in the command.

Repeating the Last x Command
After you enter an x command, you can repeat it by pressing the Enter key at the next Native
Inspect prompt. The effect is the same as if you had entered another x command with no parameters:
listing continues with the address following the last one listed. This ability to repeat continues until
you enter any other Native Inspect command.

126 Native Inspect Command Syntax

Examples
• To display memory at address 0x70000fc0 and then display three machine instructions

starting at that address:
(eInspect 7,464): x 0x70000fc0
0x70000fc0:0 <func_1+416>: 0x0900cc68
(eInspect 7,464): x /3i 0x70000fc0
0x70000fc0:0 <func_1+416>: [MMI] st4 [r52]=r51
0x70000fc0:1 <func_1+422>: addl r53=192,r1
0x70000fc0:2 <func_1+428>: nop.i 0x0;;

• To display memory at an address:
(eInspect 0,794): x /20c 0x70000ca8
0x70000ca8 <__STRING$4>: 109 'm' 111 'o' 110 'n' 105
 'i' 116 't' 111 'o' 114 'r' 0 '\000'
0x70000cb0 <__STRING$6>: 102 'f' 114 'r' 101 'e' 100
 'd' 0 '\000' 0 '\000' 0 '\000' 0 '\000'
0x70000cb8 <__STRING$5>: 100 'd' 112 'p' 50 '2' 0 '\
000'

• To display memory referenced by a pointer:
(eInspect 0,794): x /5xw pcbAttribute
0x8004ee0: 0x00030000 0x00000005 0x00000000 0x00000000
0x8004ef0: 0x00000000
(eInspect 0,794): x /5b pcbAttribute
0x8004ee0: 0x00 0x03 0x00 0x00 0x00

• To display instructions relative to the current location:
(eInspect 3,663): x /5i $ip
0x70002bf0:0 <pcbDataStructs_initialize+2256>: [MMI] break.m 0x2a;;
0x70002bf0:1 <pcbDataStructs_initialize+2262>: ld8 r35=[r34]
0x70002bf0:2 <pcbDataStructs_initialize+2268>: nop.i 0x0;;
0x70002c00:0 <pcbDataStructs_initialize+2272>: [MMI] adds r36=4,r35;;
0x70002c00:1 <pcbDataStructs_initialize+2278>: adds r37=44,r36

• Use the following commands to display data in t (binary), o (octal), d (signed decimal), u
(unsigned decimal), and x (hexadecimal) format:
(eInspect 7,498): x 0x6ffffee0
0x6ffffee0: 0x00250000
(eInspect 7,498): x /t 0x6ffffee0
0x6ffffee0: 00000000001001010000000000000000
(eInspect 7,498): x /o 0x6ffffee0
0x6ffffee0: 011200000
(eInspect 7,498): x /d 0x6ffffee0
0x6ffffee0: 2424832
(eInspect 7,498): x /u 0x6ffffee0
0x6ffffee0: 2424832
(eInspect 7,498): x /x 0x6ffffee0
0x6ffffee0: 0x00250000

• Use the following command to specify the current default to continue displaying memory.
When you enter a format specification and an address, the x command uses those values as
the defaults until you change the specification:
(eInspect 6,1103): x /3i 0x70000ca8
0x70000ca8 <__STRING$2+24>: data8 0x14c84a407a
0x70000cb2 <__STRING$2+34>: [MII] break.m 0x0
0x70000cb8 <__STRING$2+40>: break.i 0x0
(eInspect 6,1103): x/2
0x70000cbe <__STRING$2+46>: break.i 0x0
0x70000cc2 <__STRING$3+2>: [MII] data8 0x103932ba333
(eInspect 6,1103): x /7
0x70000cc8 <__STRING$3+8>: (p16) cmp4.eq p7,p16=45,r25
0x70000cce <__STRING$3+14>: data8 0xc8dcdec6ca
0x70000cd2 <__STRING$3+18>: [MII] data8 0x15b1b7b6311

x Command 127

0x70000cd8 <__STRING$3+24>: data8 0xf481a480b1
0x70000cde <__STRING$3+30>: data8 0x014c84a40
0x70000ce2 <__STRING$4+2>: [-3-] data8 0x1237b21037b
0x70000ce8 <__STRING$4+8>: data8 0x1cdc9959d
(eInspect 6,1103): x
0x70000ce8 <__STRING$4+8>: data8 0x1cdc9959d

NOTE: Note that offsets are specified in hexadecimal.

• Use the convenience variables $_ and $__ as follows:
(eInspect 2,348): x $pc
0x703a4310:2 <main+402>: -535231967
(eInspect 2,348): print $_
$4 = (examine_w_type *) 0x703a4310:2
(eInspect 2,348): print $__
$5 = -535231967

128 Native Inspect Command Syntax

5 Using Tcl Scripting
Introduction to Tcl

Native Inspect includes Version 8.5 of the open-source Tool Command Language (Tcl), which
enables you to develop macros that can automate debugging operations. You can write Tcl scripts
made up of built-in Tcl commands, and you can write your own Tcl commands.
Tcl scripts enable you to extend the power and functionality of Native Inspect. Tcl can help you
create custom debugging commands suited for a particular domain or application. For example,
if you are developing a complex application, you could also provide Tcl commands that aid in
debugging the application.
Tcl Version 8.5 is the base scripting engine for Native Inspect. Some new primitives have been
added to facilitate management on the NonStop system.

Learning Tcl
For more information about Tcl, see the following resources:

• http://www.tcl.tk/

• http://www.tcl.tk/doc/compiler.html

• http://www.tcl.tk/scripting/primer.html

• http://www.tcl.tk/doc/styleGuide.pdf

Using Native Inspect Tcl Commands
The Tcl command-line interpreter is part of Native Inspect, but Native Inspect commands have
priority over Tcl commands.

Pass-Through of Tcl Commands
Some commands, such as set and help, exist in both Native Inspect and Tcl. To use the Tcl version
of such a command, you must “pass through” commands to Tcl by specifying Tcl on the Native
Inspect command line, as follows:
(eInspect 3,301): tcl tcl-command

Native Inspect Commands Implemented in Tcl
Native Inspect contains several commands that are implemented in Tcl. You do not need to use
the Tcl pass-through command when using the following Native Inspect commands:
• a command

• base command

• comment command

• d command

• disassemble command

• da command

• env command

• eq command

• fn command

• i command

• jump command

Introduction to Tcl 129

• modify command

• reg command

• tn command

Loading a Tcl Script
To load a Tcl script, use the Tcl source command. For example, to run the script named myTcl,
enter:
(eInspect 3,301): tcl source myTcl

To run the script, enter the name of the Tcl script at the Native Inspect prompt.

Using Variables Defined in a Tcl Script
You can use variables defined in a Tcl script, such as $amount, after you run the Tcl script that
contains the definition.
The Tcl interpreter treats all command arguments as Tcl scripts. The Tcl environment is persistent
for each interactive session, so variables you create and values you set are retained. For example:
(eInspect 3,301): tcl set x 0xabcd
(eInspect 3,301): tcl puts $x
0xabcd

Programming Native Inspect Tcl Commands
The Tcl Style Guide (http://www.tcl.tk/doc/styleGuide.pdf) provides a structure for Tcl script
headers and the layout of package namespaces. The structure consists of the following:

• File header
Abstract◦

◦ Copyright notice

◦ Revision string

◦ Package definition (package name, namespace, version)

• Procedure headers (one or more)
Abstract◦

◦ Arguments

◦ Results

Namespaces and Package Loading Rules
Tcl supports packages and hierarchical namespaces.

Creating Packages
Packages are libraries of Tcl code that you can create using the Tcl package provide command:
mySub.tcl
package provide mySub 1.0
my package code

Putting a Package in a Namespace
The global namespace contains the built-in Tcl commands, such as set, puts, and open. You should
create your Tcl packages in your own child namespace, not in the global namespace, which should
be the exclusive property of the application.
For example, to put package code in a namespace, use the namespace eval command. This
example puts a package in a namespace of the same name:

130 Using Tcl Scripting

mySub.tcl
package provide mySub 1.0
namespace eval ::mySub:: {
 # my package code
}
More code

In this example, the namespace ::mySub:: contains the package mySub.
When your package is installed on a system, Tcl scripts can use your package by referring to its
namespace, not its actual location.
It is important to create your packages in your own namespaces to avoid conflicts. Each exported
subsystem command must be referenced by namespace.

Other Scripts Must Explicitly Require Your Package:
Any script that uses your package must explicitly require the package, as follows:
In an app or another packagepackage require mySub

Explicitly Export Your Public Commands: Your package should export its public commands (but
not its private commands), as follows:
namespace eval ::mySub::: {
 namespace export {[a-z]*}
}
proc ::mySub::myPublicProc{} {...}

Each namespace exports symbols that can be explicitly included, and unambiguously defined. The
definition can be nested in the namespace itself (without the namespace qualifier) or declared as
a member of the namespace, with the namespace name qualified in the proc name, as follows:
#--
Syntax: dcba <context> <craddr> [<count>]
#---
proc ::mySub::dcba { context craddr {count 1} } {
 ...
}
...

If a Tcl script is to use the commands in mySub, the caller need only reference the package as
follows:
package require mySub

Other Scripts Must Import Packages and Commands
If you have explicitly exported your public commands, another user can use a wild card to import
your public commands, as follows:
In an app or another package
namespace eval ::mySub:: {
 namespace import ::mySub::*
}

A user can invoke your help by entering the Tcl help (or tclhelp) command, as follows:
tcl help commandname

Tcl Examples
• The code for the Native Inspect eq command is implemented in Tcl:

Syntax: eq <expr>
#
Effect: Evaluate the expression and display the result in
different formats.
#
#---

Tcl Examples 131

proc eq { args } {
 # sanity check
 if { ! [llength args] } {
 SYNTAX_ERROR eq
 }
 set result [matheval $args]
 set char [ASCII $result]

 PUT "\n"
 PUT "OCT: [format %06o $result] DEC: [format %-5d $result]
 HEX: 0x[format %04x result] ASCII: \'$char\'\n"

}
proc empty_str {str} {
 expr { [scan $str "%s" tmp] == -1 }
#---
}
proc crunch_number {s endnum} {
 return [string match {[-0-9#%]} [string index $s 0]]
}

• To create and use a simple Tcl command (allbases):
file: mytcl
#--
Syntax: allbases <expr>
Effect: Evaluate the expression and display the result in
different formats.
#--
proc allbases { args } {

 # sanity check
 if { ! [llength args] } {
 SYNTAX_ERROR eq
 }
 set result [matheval $args]
 set char [ASCII $result]
 PUT "\n"
 PUT "OCT: [format %06o $result]
 DEC: [format %-5d $result] HEX: 0x[format
%04x $result] ASCII: \'$char\'\n"
}

(eInspect 3,615):tcl source mytcl
(eInspect 3,615):allbases 304

OCT: 000460 DEC: 304 HEX: 0x0130 ASCII: '...0'
(eInspect 3,615):

• To use a Tcl command (ListPCBs) to walk data structure (symexpr is a Tcl command used
to evaluate symbolic expressions):
#--
 # Syntax: ListPCBS
 # Synopsis: Walk the PCBList, printing info about each PCB
 #--
 proc ListPCBs { } {

 set pcbCount [FORMAT [SYMEXPR PCBList.count] short DEC]
 PUT "\n$pcbCount Active PCBs\n"
 PUT "pin\tflags\tattributes\n"

 for { set i 0 } { [expr $i < $pcbCount] } { incr i } {
 set pin [SYMEXPR PCBList.entry\[$i\]->ref.pcb->pin]
 set flags [SYMEXPR PCBList.entry\[$i\]->ref.pcb->flags.word]
 set attributeCount [SYMEXPR PCBList.entry\[$i\]->ref.pcb->attributeCount]
 PUT "[FORMAT $pin short DEC]\t[FORMAT $flags short]\
 t[FORMAT $attributeCount short DEC]\n"

132 Using Tcl Scripting

 }
 }

• To use the Tcl script ListPCBs to walk data structure:
(eInspect 0,519): tcl source mypcb
(eInspect 0,519): ListPCBs
20 Active PCBs
pin flags attributes
0 0x6000 7
1 0x0500 0
2 0x6000 0
3 0x0500 0
4 0x6000 0
5 0x0500 0
6 0x0000 0
7 0x0000 0
8 0x0000 0
9 0x0000 0
10 0x0000 0
11 0x0000 0
12 0x0000 0
13 0x0000 0
14 0x0000 0
15 0x0000 0
16 0x0000 0
17 0x0000 0
18 0x0000 0
19 0x0000 0

Tcl Commands Provided by Native Inspect
Native Inspect includes the built-in commands that are provided by open-source Tcl (such as package
provide and namespace eval). In addition to these, the commands listed in Table 14 are provided
specifically for the HP NonStop platform.

NOTE: Starting with Tcl 8.5, the exprexpression and formatexpression commands are
enhanced to support evaluating and formatting of 64-bit expressions.

NOTE: Starting with Tcl 8.5, the lexprexpression command is no longer supported. The
mpexprexpression and mpformatexpression commands are deprecated.

Table 14 Tcl Commands for HP NonStop Systems

DescriptionTcl Command

Evaluates a 32-bit expression. Also supports 64-bit expressions.exprexpression

Outputs a formatted 32-bit expression. Also supports 64-bit expressions.formatexpression

Evaluates a long expression (both 64-bit arithmetic and logical expressions). For
expression, specify the high and low 32 bits separated by a space.

lexprexpression

Evaluates a multiple precision expression. Can have an arbitrary operand. There
is no automatic truncation, so be careful when performing bit-shifting operations.

mpexprexpression

Outputs a formatted multiple-precision value.mpformatexpression

Example: tcl puts (mpformat 0x%x [mpexpr 0xffffffff00000000]]
0x0xffffffff00000000

Displays output; PUT does not include a newline, while puts does. PUT output is
also captured to a log file if you use the Native Inspect log command to record
a debug session.

{PUT|puts}expression

Passes the results of a symbolic expression to the Tcl script. Typically used to assign
a return value to a Tcl variable. Is essentially the output of the Native Inspect print

symexpr

Tcl Commands Provided by Native Inspect 133

Table 14 Tcl Commands for HP NonStop Systems (continued)

DescriptionTcl Command

command passed to the Tcl result buffer. The result might be a single value or
multiple values.

C++ Example:
(eInspect 3,301): tcl set x [symexpr NUMCPLUS
(eInspect 3,301): tcl puts $x 15

COBOL Example:
(eInspect 5,1174): put [symexpr DI NOT EQUAL 0 1
(eInspect 5,1174): tcl set x [symexpr DI IS GREATER THAN 5]
(eInspect 5,1174): tcl puts $x 1

134 Using Tcl Scripting

A Command Mapping With Debug and Inspect
• Table 15 lists Debug commands and equivalent Native Inspect commands.
• Table 16 lists Inspect commands and equivalent Native Inspect commands.

Table 15 Debug Commands and Equivalent Native Inspect Commands

Equivalent Native Inspect CommandDebug Command

a (ASCII)A

amapAMAP

baseBASE

mab (memory access breakpoint)BM

deleteC, CM

d (display memory)D, DN

exitEXIT

quit

fc (fix command)FC

fn (find number)FN, FNL

helpHELP

help option

i (instructions)I, IN

ih (info handlers)IH

switchINSPECT

info with symbol optionLMAP

disassemble

da

mh (modify handlers)MH

modifyMODIFY

set (variable)

continueR

killSTOP

btT, TN

tj (trace from a jump buffer or from ucontext)TJ

attachV

vector

vq (selects a segment)VQ

eq (equals)=

env (environment)?

135

Table 16 Inspect Commands and Equivalent Native Inspect Commands

Equivalent Native Inspect CommandInspect Command

Low-Level Inspect Commands

a (ASCII)A

break, tbreakB

mab (memory access breakpoint)BM

delete, dmabC, CM

d (display memory)D

fc (fix command)FC

NOT SUPPORTEDF

fn (find number)FN

NOT APPLICABLEHIGH

i (instructions)I

modify, set (variable)M

NOT SUPPORTEDP

continueR

killSTOP

bt (bt, tn)T

vq (select segment)VQ

env (environment)?

eq (equals)=

High-Level Inspect commands

NOT SUPPORTEDadd alias

NOT SUPPORTEDadd key

attach, vectoradd programprocess

snapshotadd programsnapshot

dir (directory for source), map-source-name (base file name)add source assign

break, tbreak (temporary)break

deleteclear

commentcomment

NOT SUPPORTEDdelete alias

NOT SUPPORTEDdelete keys

NOT SUPPORTEDdelete source assign

NOT SUPPORTEDdelete source open

print, outputdisplay

env (environment)env

exit, quitexit

136 Command Mapping With Debug and Inspect

Table 16 Inspect Commands and Equivalent Native Inspect Commands (continued)

Equivalent Native Inspect CommandInspect Command

NOT SUPPORTEDfa

NOT SUPPORTEDfb

fc (fix command)fc

NOT SUPPORTEDfiles

NOT SUPPORTEDfk

conditionif

help, help optionhelp

show with commands optionhistory

holdhold

disassemble, daicode

ptypeidentifier

ptypeinfo identifier

NOT SUPPORTEDinfo location

info with dll optioninfo objectfiles

NOT SUPPORTEDinfo opens

NOT SUPPORTEDinfo savefile

info with frame optioninfo scope

vqinfo segments

ihinfo signals

NOT SUPPORTEDkey

NOT SUPPORTEDlist alias

info with breakpoints optionlist breakpoints

showlist history

NOT SUPPORTEDlist key

info with sessions optionlist program

NOT SUPPORTEDlist source assign

NOT SUPPORTEDlist source opens

loglog

NOT APPLICABLElow

info with func optionmatch scope

p, modifymodify

mhmodify signal

sourceobey

info with dll optionobject

NOT SUPPORTEDopens

137

Table 16 Inspect Commands and Equivalent Native Inspect Commands (continued)

Equivalent Native Inspect CommandInspect Command

logout

waitpause

vectorprogram

continueresume

savesave

frame, select-framescope

switch with INSPECT optionselect debugger debug

vqselect segment

set (environment) with lang optionselect language

vectorselect program

NOT SUPPORTEDselect source system

NOT SUPPORTEDselect systype

set (environment), set (variable)set

showshow

ih (info handler)signals

listsource

map-source-namesource assign

step, stepi, next, nextistep

killstop

NOT SUPPORTEDsystem

NOT SUPPORTEDterm

NOT SUPPORTEDtime

bt (bt, tn)trace

NOT SUPPORTEDvolume

NOT SUPPORTEDxc

138 Command Mapping With Debug and Inspect

B Redirected and Aliased WDB Debugger Commands
The following WDB commands have a corresponding Native Inspect command with the relationship
between the commands taking one of the following forms:
• A command alias – The WDB and Native Inspect syntax and semantics are identical. You

can specify the WDB command and it automatically maps to the corresponding Native Inspect
command.

• A command redirect – The WDB and Native Inspect syntax and semantics differ but the function
is similar. The WDB command is disabled and the session displays a message redirecting
you to use the appropriate Native Inspect command.

Table 17 lists the redirected and aliased WDB commands.

Table 17 Redirected and Aliased WDB Commands

Native Inspect CommandRedirect or AliasWDB FunctionWDB Command

save See: save Command (page 109)RedirectCreates an HP-UX core file from a live
process.

dumpcore

map-source-name See:
map-source-name (map) Command
(page 99)

RedirectDefine path mappings to locate object
and source files.

pathmap

hold See: hold Command (page 84)AliasInterrupts the execution of the debugged
program.

interrupt

log See: log Command (page 97)RedirectControls command and output logging.redirect

139

Index

Symbols
!= (operator), 62
command, 56, 64
#, in frame number, 69
$, 62, 103
$$, 62, 103
$_, 126, 128
$__, 126, 128
$cdir, 74, 116
$cwd, 74, 116
$SYSTEM.SYSnn.EINSPECT, 18
& (concatenation) operator, COBOL), 53
-2, in Native Inspect prompt, 23
-g option (break), 67
-g option (dmab), 77
-g option (mab), 98
-g option (symbol file), 35, 65, 119
-h option (break, tbreak), 67
-h option (mab), 98
/format specification, 63
< (operator), 62
== (operator), 62
> (operator), 62
@ symbol, 106
–debug option, 19

A
a command, 58, 64, 73
abbreviating commands, 23
abbreviation of commands, 23
abend, 28, 69, 70
access errors, 29
ADD PROGRAM, 31
add source assign (Inspect), 136
add-symbol-file command, 28, 59, 65
address of symbol file, 35
address option, 112
Address, attributes, 65
addressing symbols

DLLs, 28
for DLL, 28

Advancing execution to main(), 36
all-registers option, 86
amap command, 56, 65
an command, 64
Application registers, 109
architecture option, 86
args option, 86
Array elements, displaying, 106
array option, 112
ASCII, 64, 72
asm-demangle option, 112
attach command, 23, 25, 57, 66
attch command, 32
attribute

breakpoint, 31
INSPECT, 20
SAVEABEND, 28

audience, 9
comments, 14

Automatic display list, 18, 58, 73, 75, 79

B
b command, 33
base command, 56, 66
block-size option, 115
Branch registers, 109
break command, 33, 57, 67
break key, 24, 25, 27, 57, 71, 119, 125
break option, 88
breakpoint

attributes, 31
events, 31
global, 26
setting for DLL, 29

breakpoint-number, 71
Breakpoints, 71, 78

deleting, 73
breakpoints, 67, 75

deferred, 32
breakpoints option, 86
bt command, 33, 58, 69, 121
Buffers, displaying, 106

C
C++ debugging options, 15
C++ support, 18
C-style syntax, 62, 111
C/C++

RUND command, 36
C/C++ language

advancing execution to main(), 36
calling functions, 32
Cast expression, 104, 106
catch command, 58, 69
cd command, 56, 70
Character pointers, displaying, 105
characters, unprintable, 50
check option, 110
COBOL and Native Inspect, 47
COBOL debugging options, 15
COBOL support, 18
cobol-arg-values option, 112
code optimization

Inspect, 15
command

abbreviation, 23
DEBUG, 19
DEBUGNOW, 20
run, 19
RUND, 19

140 Index

save snapshot, 28
Command history, 116
Command prompt, 23
command prompt, 23
commands

debug-compatible, 17
principal, 33

commands command, 58, 70
commands option, 116
comment command, 56, 71
comparing debuggers, 17

COBOL specifics, 18
Inspect, 17

compatibility of commands, 17
Compilation directory, 74, 116
compiling program files, 34
complaints option, 110
Concatenation operator, COBOL, 53
condition command, 58, 71
Conditional breakpoints, 67
conditional-expression, 71
confirm option, 110
Constant expressions, displaying, 105
contact HP, 14
continue command, 27, 33, 57, 71
continue-to-main option, 110
control of process, 34
conventions, typographic, 11
copying option, 86, 116
core file, 27
corruption option, 90
CPU number, 23
CPU, executing in same, 24
Current frame, 83
Current process, 23, 24
current process, 25
Current working directory, 70, 74, 108, 116
current working directory, 35
Custom file, 23

D
d command, 58, 72, 73
da command, 58, 75
Data structures, displaying, 106
death event, 31
DEBUG, 27
debug

events, 31
DEBUG command, 19
debug command, 19, 20, 34
debug compatible commands, 17
Debug debugger, 15, 17
DEBUG procedure, 20
debuggers

comparing, 17
Inspect, 15
Native Inspect, 15
selection criteria, 20
switching, 31

Visual Inspect, 15
debugging

DLLs, 28
global, 26
multiple instance, 24
multiprocess, 24, 32
options, 15
snapshot, 28
snapshot files, 27
stopping, 32
symbolic, 15
TNS process, 27

debugging options
C++, 15
COBOL, 15
pTAL, 15
TNS/E, 15

debugging tools, 13
DEBUGNOW, 27
DEBUGNOW command, 20
default subvolume, 35
deferred breakpoints, 32
define command, 71, 77
define command (user-defined), 59
delete command, 33, 58, 73
delete display command, 58, 73
demangle option, 112
dereference option, 112
detach command, 25, 57, 73
dir command, 28, 36, 56, 74, 99
directories option, 74, 116
Directory search path, 74
dis command, 75
disa command, 75
disable command, 58, 75
disable display command, 58, 75
disassemble command, 33, 75
display command, 33, 58, 76
Display list, 25, 58, 73, 75, 79
display option, 86
dlclose(), 28
dll option, 86
DLLs, 87, 89

addressing symbols, 28
assessing location, 30
debugging, 28
handling events, 30
listing, 28
loading symbols, 28, 34
setting breakpoints, 29

dlopen(), 28
dlopen(), dlclose(), 35
dmab command, 33, 58, 77
document command (user-defined), 59
document organization, 11
documentation

Native Inspect, 16
related, 16

down command, 58

141

down-silently command, 58, 78
dynamic-link libraries see DLL

E
EDIT files, 16
EINSCSTM file, 23, 103
EINSPECT, 17, 18, 22, 103
elements option, 112
emulated TNS processes, 15
enable command, 58, 78
enable display command, 58, 79
enter key, 80, 95, 102, 118, 126
env command, 58, 79
eq command, 56, 79, 105
errors, reporting, 14
event

debugging, 30
handling, 31
handling for DLL, 30

events
breakpoint, 31
deug, 31
OSS exec, 31
process death, 31
signal, 31

Example session
C program, 37
COBOL program, 40

executing Native Inspect, 19
exit command, 32, 57, 79, 108
expr command (Tcl), 133
Expression specification, 62, 76
extensions, 16

F
fc command, 56, 79
features, new, 10
File names

qualified, 35
source, 36

files
locating, 35

files command, 56, 80
files option, 86
finish command, 27, 33, 57, 80
Floating-point registers, 109
fn command, 58, 80
fopen command, 56, 81
format command (Tcl), 133
format letters, 63
Frame

current, 83
numbers, 87

frame command, 30, 33, 58, 82, 83
frame option, 87, 88, 89
frame-count option, 115
free option, 115
function calls

command line, 103

functions
calling, 32

functions option, 87

G
gaining process control, 34
GDB, 16

differences with Native Inspect, 32
General registers, 109
Global breakpoint, 67, 98
global breakpoint, 26, 27
global debugging, 26

considerations, 27
Global MAB, 77
Global symbol file, 35, 65, 119
global symbol file, 35

H
handing events

DLLs, 30
handle option, 87
handling events, 31
heap corruption, 29
heap filename option, 90
heap idnumber option, 90
heap option, 90
heap-check option, 117
heap-interval option, 90
heap-size option, 115
height option, 110
help command, 56, 83
History buffer, 103
History of commands, 116
history option, 110
hlce (high-level conditional expression), 71
hold command, 57, 84
HP NonStop Open System Services (OSS), 19, 66
HP, contacting, 14

I
i command, 58, 85
icode, 72
identifying processes, 25
ignore command, 58, 84
ih command, 57, 84
info command, 33, 56, 86
info command (memory leak detection), 59, 90
information

primary, 16
secondary, 16

information, related, 13
input-radix option, 111
Inspect, 31

subsystem, 16
INSPECT attribute, 20
Inspect debugger, 15, 17
INSPECT ON, 20
INSPSNAP, 28
instance of processes, 24, 25

142 Index

Instruction pointer, 106
invoking

Native Inspect, 20
invoking Native Inspect, 19, 22

J
jb command, 93
jump command, 57, 93

K
key

break, 24, 25, 27, 57, 71, 119, 125
enter, 80, 95, 102, 118, 126

kill command, 57, 94

L
language option, 111
languages supported, 18

C++, 18
COBOL, 18
pTAL, 18

leaks filename option, 90
leaks leaknumber option, 90
leaks option, 90, 115
lexpr command (Tcl), 133
line option, 87, 88
linespec

syntax of see locspec
list command, 33, 36, 59, 94
listing

DLLs, 28
listsize option, 111, 117
llce (low-level conditional expression), 61, 71
LOAD option, 28
Loadfile, 86
Loading symbols, 34
loading symbols

DLLs, 28
locals option, 87, 88
locating files, 35
Locating source files, 95
location

assessing for DLLs, 30
locspec

syntax of, 60
log command, 56, 97, 133
ls command, 56, 97

M
m command, 33
MAB (memory access breakpoint), 97
mab command, 33, 58, 97
map command

See map-source-name command, 99
map-source-name command, 36, 57, 99
mask option, 62
max-function-matches, 111
max-symbolic-offset option, 112
Memory access breakpoint (MAB), 97

memory debugging, 30
memory leaks, 29
memory problems, 29
mh command, 57, 100
min-heap-size option, 115
min-leak-size option, 116
mode option, 111
modify command, 58, 102
Modifying variables, 107
mpexpr command (Tcl), 133
mpformat command (Tcl), 133
multiprocess debugging, 24, 26, 32

identifying process, 25

N
namespace eval command (Tcl), 130
Native Inspect

differences with WDB and GDB, 32
documentation, 16
gaining process control, 34
global debugger, 26
introducing, 15
languages supported, 18
origins, 16
preparing to use, 33
principle commands, 33
process debugging, 18
quick start, 33
starting, 19, 20
starting explicitly, 22
starting in OSS, 22
startup screen, 22
stopping, 32
TNS/E systems, 15
using, 33

native TNS processes, 15
native-address specification, 61
new and changed features, 10
next command, 27, 33, 57, 102
nexti command, 57, 102
nocstm option, 56, 103
NonStop extensions, 16
notation conventions, 11
null-stop option, 112

O
object option, 112
OCA (Object Code Accelerator), 27
on or off option, 115
Open Program, 31
opening a snapshot, 28
operator option, 62
optimization, 15
optimization level, 34
optimized-code-warning, 111
optimized-loc-print, 111
option

LOAD, 28
UNLOAD, 28

143

–debug, 19
options

debugging, 15
organization of the document, 11
origin of Native Inspect, 16
OSS, 18, 19 see HP NonStop Open System Services

(OSS)
starting Native Inspect, 22

OSS exec event, 31
output command, 58, 63, 103
output-radix option, 111
overview

Native Inspect, 15

P
package provide command (Tcl), 131
package require command (Tcl), 131
pathnames, resolving, 64
pathnames, specifying, 64
PIC, 28
Pointers (pTAL), 62
Pointers, displaying, 105
Position-Independent Code see PIC
POSIX threads, 32
Predicate registers, 109
pretty option, 112
print command, 33, 58, 63, 103, 104, 115, 133
print option, 112
priv command, 57, 67, 108
Priv mode (privileged), 111
Privileged debugging, 20
privileged debugging, 26
privileged mode, 27
PROC name, in stack trace, 111
procedure

DEBUG, 20
PROCESS_DEBUG, 20

process
CPU location, 24
death events, 31
debugging multiple, 24
debugging TNS, 27
identifying, 25
instance, 24
OSS exec events, 31
running, 20
starting, 19

process control, 34
process debugging, 18
process number, 23
process option, 87
PROCESS_DEBUG procedure, 20
processes

TNS emulated, 15
TNS native, 15

program files
compiling, 34
transferring, 34

program option, 87

Prompt, 23
prompt, 23
pTAL debugging options, 15
pTAL pointers, 111
pTAL subprocs, 111
pTAL support, 18, 62, 111
ptype command, 59, 108
PUT command (Tcl), 133
puts command (Tcl), 133
pwd command, 57, 108

Q
q command, 108
Qualified file names, 35
quit command, 32, 57, 108

R
radix option, 113
reader, 9

comments, 14
reg command, 58, 109
Register names, 109
register option, 89
registers option, 58, 87
Registers, with print command, 105
related debugging tools, 13
related documentation, 16
related information, 13
release version

origins, 16
repeats option, 112
resolving pathnames, 64
run command, 19, 32
run command, internal, 32
RUND command, 19, 34, 36
running process, 20
RVU, 9

S
Sample session

C, 37
COBOL, 40

save command, 28, 57, 109
save snapshot

command, 28
SAVEABEND attribute, 28
scope command, 33
scope option, 87
Search path, 74, 116
searches, substring, 50
SELECT DEBUGGER DEBUG, 31
select-frame command, 30, 58, 82, 110
selection criteria, debuggers

selection criteria, 20
server

snapshot, 28
sessions option, 87
set command (environment), 57, 110
set command (variable), 33, 58, 104, 114

144 Index

set heap-check command (memory leak detection), 59,
115

set language ptal command, 62
setting breakpoints

DLLs, 29
sevenbit-strings option, 112
show command, 57, 80, 116
show directories command, 74
show heap-check command (memory leak detection), 59
show user command (user-defined), 59
signal

events, 31
signal event, 31
Signal handlers, 100
Signal names, 100, 101
signals option, 87
snapshot

considerations when debugging, 28
opening, 28
server, 28

snapshot command, 28, 57, 117
Snapshot file, 28
snapshot files

debugging, 27
source command, 57, 117
Source files, 95
source files, 34
Source name mapping, 36, 95
source option, 87
Source search path, 36, 74, 116
specifying pathnames, 64
SPI buffers, 18
stack option, 87
starting a process, 19
starting Native Inspect, 19

EINSCSTM custom file, 23
under OSS, 22

startup screen, 22
static-members option, 112
step command, 27, 33, 57, 83, 118
stepi command, 57, 118
stopping Native Inspect, 32
string option, 116
Structure, displaying, 104
SUBPROC name, in stack trace, 111
Subprocs in pTAL, 111
substring searches, 50
Subvolume search path, 74
super ID user, 26, 27
supported languages, 18
supported RVU, 9
switch command, 31, 57, 119
switch to system debugger command, 31
switching debuggers, 31
symbol

loading for DLL, 28
symbol command, 28, 34, 59, 119
symbol file

address, 35

symbol option, 87
symbol-file command, 28, 34, 59, 119
symbol-filename option, 112
symbol-files option, 87
symbol-reloading option, 113
symbolic debugging, 15
symbolic-addr option, 112
Symbols, loading, 34
symexpr command (Tcl), 133
syntax

/format, 63
expression, 62
linespec see locspec
llce, 61
locspec, 60

syntax conventions, 11

T
TACL, 19
target option, 87
tbreak command, 57, 120
Tcl, 15, 16, 129

commands, 134
tclhelp command (Tcl), 131
threads, 32
tj command, 59, 120
tn command, 58, 121
TNS debugging options, 15
TNS process

debugging, 27, 69
TNS process, debugging, 27, 69
TNS/E, 15
TNS/E systems, 15

debuggers, 15
TNS/R, 15
Tool Command Language see Tcl
trace command, 33
transferring files, 34
truncation of commands, 23
tu command, 59, 120
types option, 88
typographic conventions, 11

U
union option, 112
UNIX, 16

core files, 27
UNLOAD option, 28
unload-symbol-file command, 59, 122
unmap-source-name command, 122
unprintable characters, 50
until command, 27, 57, 122
up command, 59, 123
up-silently command, 59, 123
user ID, 25
user option, 117

V
Value history list, 58, 62, 103, 107

145

value option, 62
Variable addresses, displaying, 105
variables option, 88
Variables, modifying, 107
vector command, 25, 32, 57, 124
verbose option, 113
version, 16
version option, 56, 57, 117, 124
Visual Inspect, 15, 25, 31
volume command, 70
vq command, 59, 124
vtable option, 112

W
wait command, 25, 27, 57, 125
warranty option, 88, 117
WDB, 16

differences with Native Inspect, 32
whatis command, 59, 125
which command, 57, 125
width option, 113
Working directory, 108
working directory see current working directory

X
x command, 58, 63, 125

146 Index

	Native Inspect Manual
	Contents
	About This Document
	Supported Release Version Updates (RVUs)
	Intended Audience
	New and Changed Information
	New and Changed Information for H06.24/J06.13 (528122-014)
	New and Changed Information for H06.23/J06.12 (528122-013)
	New and Changed Information H06.21/J06.10 (528122-012)
	New and Changed Information for H06.20/J06.09 (528122-011)
	New and Changed Information for H06.20/J06.09 and H06.17/J06.06 (528122–009)
	New and Changed Information for H06.14/J06.03 and H06.15/J06.04 (528122–008)
	New and Changed Information for H06.14/J06.03 and H06.15/J06.04 (528122–008)

	Document Organization
	Notation Conventions
	General Syntax Notation

	Related Information
	Publishing History
	HP Encourages Your Comments

	1 Introducing Native Inspect
	Native Inspect on TNS/E Systems
	Debuggers on NonStop TNS/E Systems
	Origins of Native Inspect
	GDB Industry Standard, Open Source Debugger
	Additional NonStop Extensions
	Relationship to the Inspect Subsystem
	Documentation for Native Inspect
	Comparing Native Inspect to Debug
	Some Commands Are Debug-Compatible

	Comparing Native Inspect to Inspect
	Differences Between Native Inspect and Inspect

	COBOL-Specific Differences

	Process Debugging Using Native Inspect
	Languages Supported by Native Inspect
	Starting Native Inspect
	Starting a Process Under the Control of the Debugger
	Debugging a Running Process
	Invoking the Debugger From a Running Process

	Debugger Selection Criteria
	Explicitly Starting Native Inspect
	Reading the Custom File
	Using the Command Prompt to Identify the Current Process

	Native Inspect Command Abbreviations and Command Alternates

	Debugging Multiple Processes
	Debugging Two Processes With One Instance of Native Inspect
	Using One Instance of Native Inspect to Debug Multiple Processes
	Considerations for Multi-Process Debugging

	Identifying Additional Processes
	Using a Separate Instance of Native Inspect for Each Process
	Example of Using Multiple Instances of Native Inspect

	Global Debugging
	Native Inspect Is the Global Debugger
	Considerations for Global Debugging

	Debugging TNS Processes
	Debugging Snapshot Files
	Creating a Snapshot File
	Opening a Snapshot file
	Snapshot File Considerations

	Debugging DLLs
	Suspending Process Execution on DLL Events
	Listing DLLs
	Loading Symbols for DLLs
	Addressing Symbols for DLLs Loaded at Another Address
	Setting Breakpoints

	Debugging Memory Problems
	Heap Corruption
	Memory Leaks
	Access Errors
	Commands For Interactive Memory Debugging

	Handling Events
	Assessing Your Location After an Event

	Switching Between Debuggers (Inspect and Visual Inspect)
	Stopping Native Inspect
	Differences Between Native Inspect and WDB and GDB

	2 Using Native Inspect
	Quick Start for Inspect Users
	Preparing to Debug Using Native Inspect
	Compiling and Transferring Program Files
	Gaining Control of a Process Using Native Inspect
	Optionally Loading Symbols Information
	Understanding Global versus Per-Process Symbol Files
	Specifying a Load Address for Symbol Files
	Considerations for Locating Symbols
	Understanding How Native Inspect Locates Files

	Optionally Determining the Compilation-Time Source File Name
	Optionally Configuring a Search Path for Your Source Files
	Changing Paths
	Changing File Names

	Advancing Execution to main() in C/C++ Programs

	Sample Native Inspect Session (C++ Program)
	Launching a C++ Program Under Native Inspect Control
	Listing the Source
	Tracing the Stack
	Controlling Execution
	Printing Variables and Memory
	Stepping Execution Into a Function
	Setting a Memory Access Breakpoint (MAB)
	Stopping Mid-Statement
	Ending the Program and Debugging Session

	Sample Native Inspect Session (COBOL Program)
	Starting a Program Under Native Inspect Control
	Listing Source and Setting a Breakpoint at a Line Number
	Stepping Execution
	Displaying a Level 88 Condition Name
	Examining a Record
	Modifying a Record Field
	Examining Tables
	Setting a Breakpoint on a Nested Program Unit
	Debugging Copy Libraries
	Terminating the Debugging Session

	3 Using Native Inspect With COBOL Programs
	Understanding how Native Inspect finds Data Items
	Handling of SOURCE and COPY Directives
	Displaying Lines Included by SOURCE and COPY Directives
	Setting Breakpoints at Lines Included by SOURCE and COPY Directives

	Displaying Source Lines
	Specifying Variables and Tables
	Specifying Variables
	Specifying Tables
	Specifying Tables With Variable Upper Bounds
	Specifying Level 88 Condition Names

	Displaying Variables
	Displaying Level 88 Condition Names
	Displaying Argument Values
	Displaying Unprintable Characters
	Displaying the Length of the COBOL Variables

	Handling of REDEFINES and RENAMES
	Assigning Values to Data Items
	Assigning Values to Variables
	Changing the Radix of Numeric Literals
	Considerations when Changing the Radix

	Assigning Values to Level 88 Condition Names
	Assigning Values to Tables and Records
	Assigning Values to Character Strings

	Evaluating Expressions
	Displaying Data Item Types
	Performing Machine-Level Debugging
	Controlling Execution

	4 Native Inspect Command Syntax
	Categories of Native Inspect Commands
	Syntax of Common Command Elements
	Syntax of locspec
	Specifying Code Locations for pTAL Programs
	Specifying Code Locations for COBOL Programs

	Syntax of native-address
	Syntax of llce
	Syntax of expression
	Syntax of /format

	Specifying Pathnames in Native Inspect Commands
	Resolving Pathnames
	Identifying the Default Current Working Directory

	# (comment) Command
	a (an) Command
	add-symbol-file Command
	Related Commands

	amap Command
	Examples

	attach Command
	Example

	base Command
	break (tbreak) Command
	Setting Conditional Breakpoints
	Setting Global Breakpoints
	Examples

	bt (tn) Command
	Consideration for Debugging TNS Processes
	Example

	catch Command
	Managing a Stopping Process (STOP and ABEND Events)

	cd Command
	Example

	commands Command
	Example

	comment (#) Command
	condition Command
	continue Command
	Example

	define Command
	Usage Note
	Example

	dn Command
	Example

	delete Command
	delete display Command
	Consideration

	detach Command
	Considerations
	Example

	dir Command
	Example

	disable Command
	Example

	disable display Command
	Considerations

	disassemble (da) Command
	Example

	display Command
	Example

	dmab Command
	Example

	document Command
	Usage Note

	down (down-silently) Command
	Example

	enable Command
	Example

	enable display Command
	Considerations

	env Command
	eq Command
	exit (quit) Command
	fc Command
	files (ls) Command
	finish Command
	fn Command
	fopen Command
	Considerations
	Examples

	frame (select-frame) Command
	Considerations
	Examples

	help Command, help Option
	Examples

	hold Command
	ignore Command
	ih Command
	Example

	in Command
	Example

	info Command
	Examples

	info Command (memory leak detection)
	Examples

	jump Command
	Example

	kill Command
	list Command
	Locating Source Files
	Repeating the list Command
	Examples

	log Command
	ls (files) Command
	mab Command
	Examples

	map-source-name (map) Command
	Considerations
	Examples

	mh Command
	Example

	modify (mn) Command
	Example

	next (nexti) Command
	Example

	nocstm Option
	output Command
	print Command
	Considerations
	Examples

	priv Command
	ptype Command
	Example

	pwd Command
	Example

	quit (exit) Command
	reg Command
	save Command
	select-frame Command
	set Command (environment)
	Examples

	set Command (variable)
	Consideration

	set heap-check Command (memory leak detection)
	Examples

	show Command
	Example

	snapshot Command
	source Command
	Example

	step (stepi) Command
	Example

	switch Command
	symbol-file (symbol) Command
	Related Commands
	Example

	tbreak Command
	tj Command
	tu Command
	Examples

	tn (bt) Command
	unload-symbol-file Command
	unmap-source-name (unmap) Command
	Examples

	until Command
	Examples

	up (up-silently) Command
	Example

	vector Command
	Considerations

	version Option
	vq Command
	wait Command
	whatis Command
	which Command
	Example

	x Command
	Default Values
	Convenience Variables $_ and $__
	Repeating the Last x Command
	Examples

	5 Using Tcl Scripting
	Introduction to Tcl
	Learning Tcl

	Using Native Inspect Tcl Commands
	Pass-Through of Tcl Commands
	Native Inspect Commands Implemented in Tcl
	Loading a Tcl Script
	Using Variables Defined in a Tcl Script

	Programming Native Inspect Tcl Commands
	Namespaces and Package Loading Rules
	Creating Packages
	Putting a Package in a Namespace
	Other Scripts Must Explicitly Require Your Package:
	Other Scripts Must Import Packages and Commands

	Tcl Examples
	Tcl Commands Provided by Native Inspect

	A Command Mapping With Debug and Inspect
	B Redirected and Aliased WDB Debugger Commands
	Index

